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ABSTRACT

Split-plot designs are commonly used in industrial experiments when there are hard-

to-change and easy-to-change factors. Due to the number of factors and resource

limitations, it is more practical to run a fractional factorial split-plot (FFSP) design.

These designs are variations of the fractional factorial (FF) design, with the restricted

randomization structure to account for the whole plots and subplots. We begin by

discussing the formulation of FFSP designs using integer programming (IP) to achieve

various design criteria. We specifically look at the maximum number of clear two-factor

interactions and variations on this criterion. By making restrictions on some of the

general linear constraints, we are able to customize the alias structure of these FFSP

designs. Additional constraints allow for the generation of blocked FFSP designs that are

shown to meet performance standards shown in today's literature. By generalizing the

model formulation, we show how designs for numerous stages can be generated. In

addition, we explore using a genetic algorithm heuristic to search for split-plot designs

from a candidate matrix of factor effects generated using the Kronecker product.
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CHAPTER 1: INTRODUCTION

Design of Experiments

Designed experiments offer a systematic approach to study the effects of several

factors on process performance. By analyzing the observations from the DOE, one can

efficiently determine the factors and interactions that influence one or more response

variables. This structured set of analysis often requires three specific statistical

assumptions about the observations errors: independence, normality, and constant

variance (Montgomery, 2001). The most important of these three is the need for the

observations to be independent. Completely randomizing the order of the factor levels

satisfies this independence assumption for designed experiments. Often, it can be

difficult to change one of the factor levels due to physical or economic restrictions, which

limits the ability to run these factor levels in a random order. When this happens,

restrictions are placed on the randomization of experimental runs, which results in a split-

plot design (SPD). (Box & Jones, 1992)

Split-Plot Designs

In a split-plot design, Box and Jones (1992) call the factors that are restricted hard-

to-change factors, and places them within a whole plot. While the other easy-to-change

factors are placed within subplots. Each time the factor levels for the whole plot are set.

we run all or some of the combinations for the easy-to-change factors within the subplot.

Due to the restrictions on randomization for the whole plot factors, split-plot designs

cannot be analyzed using the traditional DOE method. Simple experiments have one
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randomization, since all the factors are randomized. For a simple two-factor model,

complete randomization of k replications results in the following model structure:

Y,,k = P + a +16 + (afl) +

i = 1,2, j = 1,2,3, k = 1,2, -',Jk - i.i.d. N(0,cr,)

Where p is the overall mean, a, denotes the effect of factor A, /6, denotes the effect of

factor B, (a/3), denotes their interaction, and -,k represents the random error associated

with the experimental units. However, for a split-plot design, there are two

randomizations. The whole-plot factors are randomized according to the whole plot

design. Within each whole plot, the subplot factors are randomized independently of the

whole plot configuration. For replicated designs, these two randomizations lead to two

independent error components, one for the whole plot treatments and another fbr the

subplot treatments. The model structure for a split-plot design. including both error

terms, is

Y,k =P+a , + (al), + bk + W,k +Eyk

i=1,2, j=1,2,3, k=1,2,

bk -i.i.d. N(O,o- ,'k) W,k- i.i.d. N(O,Ow) ,k - i.i.d. N(O,a,2)

Where in addition to the previous notation, bk denotes the random effect associated with

the kth block or replication of the whole-plots, w,k denotes the random effect associated

with the ith whole-plot within the kth block, andEqk denotes the random errors associated

with the sub-plot experimental units within the ikth whole-plot.
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Goos and Vandebroek (2001) point out that split-plot designs cause a loss in

precision in estimating the whole plot coefficients, while increasing the precision in

estimation of the sub-plot coefficients and the whole plot by sub-plot interactions. Box

and Jones (1992) show that the error variance for the whole-plot and subplot surround

that of the error variance for a completely randomized design (CRD), where

2 2 2 iia hwn nrae o h
0ub2 < CCR) 

< 
Ch')whole. Similar research showing the increased precision for the subplot

treatments is found in Kulahci et al. (2006).

Parker et al. (2006) provide conditions on the structure of split-plot designs where

the ordinary least squares (OLS) estimates and generalized least squares (GLS) estimates

are equivalent. When dealing with saturated designs or fractional factorials, it is not

always possible to maintain orthogonality in the design structure. Loss of orthogonality

affects the consistency of our coefficient estimates across the design space (Lin, 1993).

Goos and Vandebroek (2001) describe a method to design SPDs using the D-

optimality criterion. Due to the split-plot error structure, they use prior information to

estimate the ratio between the whole plot error variance to the sub-plot error variance.

Using simulations, they show that the D-criterion value is a reliable measure for

comparing split-plot designs with finite sample size given a fairly good estimate for the

variance ratio, such as using the REML estimation method. Goos and Vandebroek point

out that one only needs to determine the correct design points to design a good

completely randomized design, while designing a good split plot experiment consists of

simultaneously choosing the number of whole plots and number of sub-plots within each

whole plot. This decision affects the structure of the variance-covariance matrix. As
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pointed out by Goos and Vandebroek, SPDs cause a loss in precision in estimating the

whole plot coefficients, while increasing the precision in estimation of the sub-plot

coefficients and the whole plot by sub-plot interactions.

Fires and Hunter (Fries & Hunter, 1980) first referred to the minimum aberration as

criteria for comparing fractional 2 k-P designs instead of resolution. Let there exist two

27-2 designs with defining relations I = ABCF = BDEG = ACDEFG and I = ABCDF =

ABCEG = DEFG, both Resolution IV designs. The second design is said to have smaller

aberration because it has fewer words of length 4 (Huang, Chen, & Voelkel, 1998).

Refer to Chen (1992) for the formal definition of minimum aberration fractional factorial

designs.

Fractional factorial designs, or 2k-P factorials, are primarily used in experiments

where there are a large number of factors to consider. Fractional factorials of Resolution

III are also called saturated designs and only require k + 1 runs to investigate the main k

factors (Box & Hunter, 1961). Fractional Factorial Split-Plot (FFSP) designs use

fractional factorial designs for the subplot structures (Kempthorne, 1998). Bingham and

Sitter (1999) and Huang et al. (1998) provide methods for generating minimum

aberration fractional factorial split-plot designs and give tables for various combinations

of whole plot and subplot factors. Bingham and Sitter (2001) apply the FFSP method to

a real industrial experiment to demonstrate how the split-plot design affects estimates.

precision, and resource allocation.

Saturated designs are often used in screening experiments in order to reduce a long

list of candidate variables to a relatively small number, allowing additional experiments
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to be more efficient and require fewer runs. Screening experiment is Phase 0 of the

sequential experimental process described by Myers and Montgomery (2002). Once the

important variables are identified, Phase 1 consists of developing a first-order model to

move the process toward the optimum response value. Phase 2 occurs when the process

nears the optimum. Usually, a second order model is constructed during this phase.

Another type of saturated design often used in screening experiments is the Plackett-

Burman (PB) design (Plackett & Burman, 1946). PB designs have high D-efficiency, but

also complex alias structures (Hamada & Wu, 1992). This complex alias structure makes

it extremely difficult to interpret the results (Montgomery, Borror, & Stanley. 1997),

because often main effects are either aliased with each other or two-factor interactions.

In blocked designs, the selection of the defining contrasts and effects to be

confounded with blocks is very complicated. This same difficulty occurs in fractional

designs, including split-plot designs. Franklin and Bailey (1977) provide a procedure to

produce fractional factorial designs where certain main effects and interactions are to be

estimated, all other effects being negligible. This approach requires a lot of computation

due to the exhaustive search; therefore, the approach becomes impractical with large

numbers of factors. Liao and Iyer (1999) use a stochastic search method, SEF (sequential

elimination of factors), as a modification to the exhaustive approach of Franklin and

Bailey. While the SEF algorithm is less computational intensive as the Franklin-Bailey

procedure, it sometimes fails to find a solution when the required design is close to a

saturated design.
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Custom Criteria

Kulahci et al. (2006) look at several design criterions for SPDs, paying close

attention to minimum aberration. They consider a sequential process example, where

split-plot designs offer great opportunities in increasing the precision in estimating the

interactions between the factors in the first step and the factors from within the second

step. While minimum aberration focuses on finding the design with the least amount of'

overall confounding (number of four-factor interactions with the mean), it does not try to

maximize the number of clear two-factor interactions. Even this strategy of maximizing

the number of clear two-factor interactions, which Wu and Wu (2002) call MaxC2

designs, is not desirable in distinguishing among the different types of two-factor

interactions that occur in split-plot designs. Namely, in SPDs, there are two-factor

interactions within the whole plot and sub-plot design structures, plus there are two-factor

interactions between whole plot factors and sub-plot factors. The later set of interactions

is normally the main reason for analysis of sequential processes, where the goal is to

study the interactions between the first step (whole plot factors) and second step (sub-plot

factors). Kulahci et al. look at three design examples for a two-step process with 7 two-

level factors in the first step and 8 two-level factors in the second step. Each design has

64 runs. The first design is the minimum aberration design, while the second and third

designs are two 64-run Fractional Factorial Split Plot designs using two different sets of

generators. Both of the FFSPs allow the authors to estimate a larger number of clear 2F.

Their examples show that minimum aberration designs do not always provide the

maximum amount of information when looking at a 2-step process with a fractional
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factorial experiment. They further break down the two FFSPs to point out the greater

number of clear two-factor interactions between whole plot and sub-plot factors. Kulahci

et al. feel instead of relying on an optimization method to create a design, such as

minimum aberration or MaxC2, on should decide the best design based on exactly what

information you are trying to gather from the design. While the authors do not provide

an algorithm for generating these designs, they do provide two examples that perform

better at estimating clear cross-plot interactions.

Linear Programming

In order to create our desired experimental design, we first construct a mathematical

model that represents the essence of the problem. Although there are various types of

mathematical models, one that is commonly used in optimization is the linear

programming (LP) model, where the goal is the optimization (minimization or

maximization) of a linear objective function while meeting a set of linear equality and/or

inequality constraints or restrictions. George Dantzig is credited for conceiving the LP

model during WWII while advising the United States Air Force on developing a planning

tool for a deployment, training, and logistics supply program. The model consists of a

number of certain quantifiable values to be made called decision variables (e.g.. x1, x2,

.... xn). The objective function provides a quantitative measure of performance to

represent a unique set of decision variables. LP models are constructed to fit various

types of problems in industry including routing, designs, planning, scheduling, and

allocation. One of the assumptions of LP models is divisibility, which allows noninteger

values for the decision variables. There are many applications where this assumption
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presents a limitation. For example, it is often necessary to assign people, machines, or

supplies to activities in integer quantities. In these situations, we formulate an Integer

Programming (IP) model where all unknown variables are required to be integers, which

is simply the IP model with the additional restriction that the decision variables must

have integer values. Furthermore, some of these variables may be required to be 0 or I

(rather than arbitrary integers) and considered binary variables. These type of IP

problems are known to be NP-hard (non-deterministic polynomial-time hard) and can

become computationally infeasible to solve if the problem becomes too large.

AMPL is a modeling language system that uses various optimization software

packages to solve LP models. One such package is CPLEX. CPLEX used advanced

optimization algorithms to find solutions to various LP problems, including integer LP

problems. The latest version is CPLEX 11.1 available from ILOG.

Summary and Outline of Research

Chapter 2 contains the journal article submitted to Technometrics in 2008. During

this chapter, we look at creating a fractional factorial split-plot design using integer

programming techniques to determine the design generators in order to meet specified

goals. We also show how to add constraints to customize the design to meet various

aliasing schemes. Instead of working with a traditional design matrix when calculating

the alias structure, we demonstrate how to represent the decision variables as binary

variables, corresponding to the standard letter-notation commonly used in design of

experiments. A collection of examples are provided for 8-, 16-, and 32- run designs. We

look at 64-run example from literature to see how our approach allows the user to further
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customize which effects and interactions are clear during the analysis. In conclusion, we

compare and contrast our split-plot design to those that can be created using a popular

statistical software package.

Chapter 3 extends the previous area into blocking FFSP designs. By using IP to

formulate the problem, we allow the user to find D-optimal designs that also optimize the

specified user criteria for the objective function. We use goal programming to look at a

series of criterion in the objective function, including number of clear main effects.

control/noise effects, two-factor interactions, and even consider interactions that arc

tested against the whole-plot error component. Our results are compared to those from

literature for screening experiments and robust parameter designs. Chapter 3 is also in

journal format, and will be submitted in late 2008.

Chapter 4 focuses on manufacturing settings that involve multiple stages in the

production line. By considering each subsequent stage in the production line as a sub-

design, we can look at the overall design as multiple split-plot design. That is, a design

for a three-staged assembly line would be considered a split-split-plot design, with the

first stage as the whole plot design, the second stage as the split-plot sub-design, and the

final stage as the split-split-plot sub-design. We modify the IP model from our previous

research to create a FFSP design for a three-staged manufacturing problem and

demonstrate how this approach can be applied systems with more than three stages.

Before focusing on generating split-plot designs using IP models, we proposed using

genetic algorithms to search through a candidate set of matrix columns to generate

various split-plot designs. Although we changed direction for our final research,
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Chapter 5 provides some promising initiatives for future research. Using the Kronecker

products operator, we are able to generate an nx n matrix that represents all possible

orthogonal experimental runs for a n-run design. We explain how to partition this matrix

into two sets: the candidate set for whole-plot factors, and the candidate set for subplot

factors. Creating a split-plot design from this matrix becomes a combinatorial problem of

selecting the proper WP and SP factors from their respective candidate set to meet the

desired performance goal. A simple genetic algorithm (GA) is proposed to search

through the set of candidate columns for the split-plot design factors; however, without

preprocessing on the candidate sets, the GA takes considerable computational time,

especially since we are calculating the alias matrix for each proposed design. In order to

reduce the size of the problem, we first the idea of eliminating the basic factors columns

from consideration in the selection process. For Resolution IV designs, we can also

eliminate several other columns from the design, bringing down the computation time

considerably. We present results for designs of various factor and run sizes, including a

the 64-run split-plot design explored in Kulahci et al. (2006).



CHAPTER 2: DESIGNING FRACTIONAL FACTORIAL SPLIT-PLOT

EXPERIMENTS USING INTEGER PROGRAMMING

Introduction

Manufacturing often involves a product going through a production process where

the output characteristics of this product reflect the effect of factors that are hard-to-

change and factors that are easy-to-change. Determining these effects involve a

systematic approach to a designed experiment. Many complex designed experiments are

used in real-world systems due to the nature of the system or to reduce the cost to

determine process effects. The runs in most designed experiments are completely

random; however, this can be very expensive or even impractical when the process

involves hard-to-change factors. For that, a split plot design (SPD) where several

experiments involving easy-to-change factors are run at fixed levels of hard-to-change

factors can be employed. The SPD structure usually requires significantly less resources

than other designs used for examining systems involving factors that are hard-to-change.

The goal is often to quickly and efficiently build a SPD based on the experimental goals

and requirements, e.g. to be able to clearly estimate certain effects.

Fractional factorial designs, or 2
" k factorials, are primarily used in experiments

where there are a large number of factors to consider. Fractional factorials of Resolution

III only require k + 1 runs to investigate the k factors (Box & Hunter, 1961). Fractional

Factorial Split-Plot (FFSP) designs use fractional factorial designs for the whole

plot/subplot structures and are orthogonal (Kempthorne, 1998). Bingham and Sitter

(1999) and Huang et al. (1998) provide methods for generating minimum aberration
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(MA) FFSP designs and give tables for various combinations of whole plot and subplot

factors. The MA design criterion (Fries & Hunter, 1980) provides a way to distinguish

between designs of maximum resolution. Bingham and Sitter (2001) apply the FFSP

method to a real industrial experiment to demonstrate how the restriction on

randomization in SPD affects estimates, precision, and resource allocation. Kulahci

(2007) uses the Kronecker product operation to create a flexible matrix of blocked

fractional factorial designs, which could be used as FFSP designs, for various design

criteria.

While the analysis of split-plot models often involve generalized least squares (GLS)

and restricted maximum likelihood (REML) to estimate the effects, we can use the

equivalence between ordinary least squares (OLS) and GLS for our first-order models

(Bisgaard, 2000). Vining, Kowalski, and Montgomery (2005) provide conditions which

make this equivalence hold for any order model. In addition to this equivalence property.

Goos and Vanderbroek (2001) prove that two-level fractional factorial designs arranged

in orthogonal blocks, such as FFSP designs, are D-optimal when estimating a model

consisting of main effects and unconfounded interaction effects. This D-optimality refers

to minimizing the determinant of the covariance matrix (Goos, 2006).

Several authors have already made tables of FFSP designs when using common

design criteria. Bingham and Sitter (2001) presented tables for 8-, 16-, and 32-run FFSP

designs using the MA design criterion. Another criterion is the maximum number of

clear two-factor interactions (2Fls), which can be shown to have advantages over MA

designs in some situations (Chen, Sun, & Wu, 1993). Wu and Wu (2002) refer to these
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designs as MaxC2 designs and discuss the rules regarding this criterion for fractional

factorials. Yang et. al. (2006) classify the 2Fls in a FFSP design into three categories:

WP2FI, SP2FI and WS2FI, where WP2FI and SP2FI refer to 2Fls involving two WP or

SP factors respectively, and WS2FI means a 2F1 between one WP factor and one SP

factor. Although not limited to balanced FFSP designs, Goos and Vandebroek (2001;

2004) have studied optimal split-plot designs using the D-optimality criterion. Kulahci et

al. (2006) present a compelling argument for custom FFSP designs not simply based on a

single criterion, but based on the alias structure, including estimating certain types of

clear two-factor interactions. Cheng et al. (1999) consider the model robustness by

looking at the estimation capacity and the expected number of suspect 2Fls. While they

conclude that MA designs are highly efficient with regards to these two criteria, if the

number of active 2FIs is large, other designs could prove more useful. Jones and Goos

(2007) describe an algorithm for finding tailor-made D-optimal FFSP designs that can

handle flexible choices of sample size, both continuous and categorical factors, and may

include interaction terms of any order.

By modeling the system as an IP, we will show how the user can create customized

FFSP designs to isolate main effects and 2Fls. The user can add specific constraints

determine the Resolution of the design, number of clear WP and SP effects, and even

isolate certain 2FIs associated with the individual main effects.

Model Representation

Let's consider a FFSP design with 2In,+nZ"-(k+k2)runs, 2 (n-k) whole plots (WP) and

2 (n2
-

k2 ) subplot (SP) runs within each whole plot. There are n, WP and n2 SP factors,



14

along with k, WP and k2 SP fractional generators. In such designs. the first n, - k,and

n2 - k2 factors for the WP and SP can be considered basic factors and represented by

single letters (Franklin & Bailey, 1977). The rest of the factors are represented by the

interaction of these basic factors. There exists a set of 2(,+ni2 )-(k,k) - 1 letter groups

formed using the letter group notation, which can be arranged using Yates order as

follows:

[A B AB C AC BC ABC ...]

As indicated above, in this notation there will be (n, + n2 )-(k, +k2) columns

represented with a single letter, whereas the rest of the columns in which the remaining

factors can be allocated are represented as the combinations of the (n, + n2 )-(k + k,)

single letters.

Using multiples of 2, the first p, = 2 ",-k ') -1 letter groups correspond to the possible

choices for WP factors. For example, if n, = 6 and k, = 2, then the first four WP main

effects are [ A B C D ] and the 2 WP fractional generators are chosen from the remaining

II combination letter groups [ AB AC BC ABC AD ...]. The other

P2 = 2 (,+,)-(k+k2)-2 (n,-k,) letter groups correspond to the choices for SP effects, with

n2 - k2 single letter factors and k2 SP level design generators.

Although using letter notation to represent factors of a FFSP design is useful in a

classroom setting, for computer modeling purposes, we'd like to represent these letter

groups using numeric values. We can accomplish this by using a reverse form of binary

conversion based upon each single letter, i.e. reading the binary number from left to right.
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For example, a 32-run FFSP design will have 5 single letters, ABCDE, forming a 5-digit

binary number. Thus, looking at letter group ABD, we have AB_D_ = 11010 in binary

notation, which can be converted to a numeric value of I I using reverse binary

conversion. Table I displays the 31 letter groups and their corresponding numeric value

for a 32-run FFSP design using this form of reverse binary conversion.

Table 1: Letter notations for 32-run FFSP design

Numeric Letter- A B C D E
Value group

1 A 1 0 0 0 0
2 B 0 1 0 0 0
3 AB 1 1 0 0 0
4 C 0 0 1 0 0
5 AC 1 0 1 0 0
6 BC 0 1 1 0 0
7 ABC 1 1 1 0 0
8 D 0 0 0 1 0
9 AD 1 0 0 1 0
10 BD 0 1 0 1 0
11 ABD 1 1 0 1 0
12 CD 0 0 1 1 0
13 ACD 1 0 1 1 0
14 BCD 0 1 1 1 0
15 ABCD 1 1 1 1 0
16 E 0 0 0 0 1

17 AE 1 0 0 0 1
18 BE 0 1 0 0 1
19 ABE 1 1 0 0 1
20 CE 0 0 1 0 1
21 ACE 1 0 1 0 1
22 BCE 0 1 1 0 1
23 ABCE 1 1 1 0 1
24 DE 0 0 0 1 1
25 ADE 1 0 0 1 1
26 BDE 0 1 0 1 1
27 ABDE 1 1 0 1 1
28 CDE 0 0 1 1 1
29 ACDE 1 0 1 1 1
30 BCDE 0 1 1 1 1
31 ABCDE 1 1 1 1 1



16

For FFSP designs, we are often interested in estimating main effects and two-factor

interactions (2FIs), so it is interesting to note that this set is closed under multiplication.

Thus, all 2FIs of the k letter groups can be simplified back into the same set. For

example, if factor D is selected and one of the fractional generators is represented by the

letter group BCD, their 2F1 corresponds to the (D)(BCD)=BC letter group. To calculate

this, we add each digit of the letter groups, modulus 2.

000 1 0 =D(8)

+01 1 10 =BCD(14)

0 11 0 0 = BC (6)

Table 2 represents all 465 2FIs and the letter group they correspond to using this

numbering scheme for a 32-run FFSP design.
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Table 2: Numeric values for two-factor interactions (Row
x Column) of letter groups from a 32-run FFSP design

2 3 4 5 6 7 8 9 101112131141516171819120 2122123124125 26 27128129130 31
1 3 2 5 4 7 6 9 8 11 101312151417161918212023222524272629283130
2 - 1 6 7 4 5 1011 8 9 1415121318191617222320212627242530312829
3 - -17 6 5 4 11109 8 1514131219181716232221 202726252431302928
4 - - 1 2 3 12131415 8 9 101120212223161718192829303124252627
5 -3 2 1311215 149 8 11 10 21202322171619182928313025242726
6 - -- -- 1 14151213 1011 8 922232021181916173031282926272425
7 -.---- - 15114113 1211 10 9 8 232221120 19 18 1711613130 292827 2625 24
8 ----- 12 3 4 5 6 7 24252627282930311617181920212223
9 ---- --- 3 2 5 4 7 6 25242726292831301716191821202322
10 --------- ---- - 1 6 7 4 5 2627242530 3128291819 161722232021
11 --- - --- 7 6 5 4 2726252431302928119118 171623222120
12 -1 2 3 282930312425262720212223116117 18 19
13------- ------ 3 2 292831 3025 24272612120 2322 17116 19 18
14 ------------- 1 30312812926 272425122232021 18119 16 17
15 ------------- - 313029 2827 262524 2322 2120 19 18 17116
16 -.-- ------ -- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
17 ----------- 3 2 5 4 7 6 9 8 111013121514
18 ------------ -- - - 1 6 7 4 5 1011 8 9 14151213
19 ------- ------ 17 6 5 4 11 10 9 8 15 14 13 12
20-- .. ---... - -. ---.--.--.--.--- 1 2 3 1213141518 9 1011
21 -- ----------------- 3 2 13 12151419 8 I1 10
22 ---------.- I----------- 1 141512131011 8 9
23 ------- - ------------ -- - -115 1413121110 9 8
24 --------- I.-------------.-I---- 1234567
25 -.-.---------------- -.-.--- - 325476
26 ------------------- ---- ----- 16745
27 --------------------------- 7654
28 --.------------------ ------ 123
29 -------------- -- 32
30O 1-- ---- a- - -

We can also use this notation to easily separate the set of WP factor candidates from

the SP factor candidates. The WP factor candidate numbers are I -* 2 "1k- - 1, with the

remaining numbers, ( 2n, --- +2 ("+1 2 Hkj+k2 ) -1), corresponding to the SP factor

candidates. For a 32-run FFSP design with n, - k, = 4 and n2 - k2 = 1, the WP factor
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candidates numbers are 1 ---> 15. That is, any letter combination with letters A. B, C, or

D. The SP factor candidate numbers are 16 -+ 31. They correspond to letter

combinations with letter E.

Now that we have a representation for the set of letter groups for the WP and SP

factor candidates, let's consider the integer programming (IP) model to select the optimal

factors.

Integer Programming Model

IP models are widely used in the operations field to model the system with an

overarching objective function and a collection of constraints to restrict the solution

space. There are several commercially available software titles to represent and solve IP

models. We are using AMPL, an algebraic modeling language, to code the formulation

of the system. Within, AMPL, we are using the CPLEX 10 solver engine to solve the

IPs. CPLEX takes advantage of the latest techniques and options available for solve IPs,

including various branch & bound and relaxation strategies. For the remainder of the

examples in this paper, we will use the default CPLEX options within AMPL to find the

optimal solution answer. All of the solutions provided take less than 15 seconds to solve

for the feasible representations. The infeasible models are identified immediately within

AMPL.

Suppose that in a 2(n,+" 2 )-(k,+k,) FFSP design with p =2 ,
-'

,
- i and

P2 = 2(n,+
n2 

)-
(
k
,

k
2
) - 2n, -k,) we would like to allocate n, WP factors into p, candidate

columns and n2 SP factors into p, candidate columns. We define a binary decision

variable xk which is equal to I if the kth letter group is chosen. The variables x, for
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k = 1. P correspond to the WP factors and the variables xk for k =p ..... p + p2

correspond to the SP factors. The following constraints will give an appropriate FFSP.

PI

Ix (2.1.1)
k=1

xk =n, (2.1.2)
k=pj+l

Constraints (2.1.1) and (2.1.2) set the number of main effects, where the model selects n,

number of WP factors and n, number of SP factors.

x, +x / -w 1, < 1,i< j (2.2.1)

x, + x, - 2w, > 0, i < i (2.2.2)

Constraints (2.2.1) and (2.2.2) enforce that the binary variable w, = I if and only if

x, = landx, = 1.

I Wy = Yk + Zk , k =11 .... I A +pA (2.3.1)
'A sk

Zk < M(l-Yk),k = 1. P, +P2  (2.3.2)

Yk + zk < Mrk ,k = 1 ... P + P (2.3.3)

where Sk is the set of 2Fls that are equivalent to the kth letter group. Constraints (2.3.1)

and (2.3.2) represent the number of 2FIs corresponding to each letter group. Here, we

introduce the binary variable Yk , which is equal to I if exactly one 2FI equivalent to the

kth letter group is chosen. When there are more than one 2FI equivalent to the kth letter

group, we use the integer variable Zk to represent this number. Constraint (2.3.3) sets
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binary variable rk = I if there is at least one 2F1 equivalent to the kth letter group. This

constraint also used the Big-M to reference a very large number. This is a common

practice in IP modeling to turn on or off binary variables, and is used extensively

throughout our IP model.

Yk +(1Xk)-tk < l,k 1 p + P, (2.4.1)

Yk + ( - xk) - 2tk > O, k =1 ... PI + P2 (2.4.2)

Y,tk = Clear2FIs (2.4.3)
k=l

Constraints (2.4.1) - (2.4.3) are used to determine the number of clear 2FIs. The first two

constraints set the binary variable i, to 1 only when there is one 2F! corresponding to the

kth letter group (Yk = I ) and the main effect for that letter group is not selected ( x, = 0).

The last constraint then sums over all letter groups to find the number of clear 2Fls.

The objective function below (2.5) maximizes the number of clear 2Fls

Max Z = Clear2FIs (2.5)

There are times when the experimenter desires a Resolution IV design, where the

main effects are clear from confounding with any 2FIs. In order to accomplish this

resolution in our IP formulation, we add constraints (2.6). These constraints make sure

that if the main effect xk = I is selected then no 2FI can be selected.

r k <_ M(l-Xk),k= p1 , + p, (2.6)

Let's look at a small FFSP example to understand these constraints further. Suppose

we wish to create a 32-run FFSP design with 4 WP factors and 5 SP factors using this IP
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formulation. We will use 8 whole plots, each having 4 subplot runs. Thus,

n, - =4-1 = 3 and n2 - k2 = 5-3 = 2. The first two IP formulation constraints are

7

Zxk = 4

31
L Xk = 5

8

The next set of constraints determines which 2FI variables are turned on. So if we

choose letter group AC (x5 = 1) as a WP factor and ABD (x,, = 1 ) as a SP factor, then

the first constraint mandates w3 = 1. Conversely, the second constraint says that if

w5.= then the other two main effects must be selected.

X5 + X1 I- W511 < 1

X5 +x 1 I -2w ., >0

From Table 2, we know that (5,11) corresponds to letter group 14, or BCD. It can be

shown that with an n-run design, there are (n-2)/2 2FIs corresponding to each of the (n-I)

letter groups. Thus, for this 32-run design, we have 15 2FI variables for each of the 31

letter groups. Constraint (2.3.1), corresponding to letter group BCD, can be seen as an

alias chain.

E Wq = WI,I5 = + W2,12 + W3,13 + W4,10 + 14'5,11 + W6,8 + W7. 9 + W16,30 + IV] 7,31

+ Wl8, 28 + W19 ,29 + W2 0,26 + W2 1,27 + W22,24 + W23,25

= Y1 4 +z 1 4

Let's assume our WP factors are [ A B C AC ] and the SP factors are [ D E CD

ABD ABCDE]. The corresponding numeric values are [ 1 2 4 5 ] and [ 8 16 12 11 311

respectively. Then for letter group 14, (2.3.1) becomes
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Wy = W2,2 + = 1 + 1 = 2=Y14 +z 4
t,jESI 4

This corresponds to an alias chain with two 2FIs aliased with each other. Constraint

(2.3.2) sets z, 4 = 2 and Y14 
= 0 since y is a binary variable, and constraint (2.3.3) sets

t,4 I to represent that there is at least one 2FI corresponding to the 14th letter group.

Finally, for a Resolution IV design, there cannot be any 2Fls corresponding to letter

group k if the corresponding main effect is selected, xk = I. Thus, constraint (2.6)

restricts the design to Resolution IV or greater. For k = 14, (2.6) becomes

t <4 M(1-xJ,)

Since t,4 = 2, then BCD cannot be a design generator or main effect (x, 4 = 0).

For Resolution III designs, we simply need to relax the IP by removing constraint

(2.6). This allows main effects to be aliased with 2FIs; however, 2FIs are not considered

"clear" when aliased with a main effect, and therefore are not counted in the objective

function.

Customized Constraints

We will now add addition constraints to the IP formulation to customize the design

for isolating specific main effects and 2FIs. Let's say we must have one WP factor and

all its 2FIs (both WP2FI and WS2FI) to be clear from confounding. We know that letter

group x, = 1 refers to a WP factor that must be chosen since it represents a single letter,

A. Thus, we add constraint (2.7) to require the main effect, xj, to be clear of any 2F1.

Notice, constraint (2.7) is the same as (2.6) for k = 1. We only need to add (2.7) when we

are not using a Resolution IV IP formulation.
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t, _M(1-xI) (2.7)

Constraints (2.8.1) and (2.8.2) make sure all 2FIs involving this main effect are clear.

Yk + Zk + Xk ,5 M(I-w,.,)+ 1,s= 1.. P + P2 (2.8.1)

Yk + Zk + Xk < M(I-w,,)+1,s = P1 , + P2 (2.8.2)

where k is the letter group from Table 2 corresponding to wl,s in the first constraint and

w,,, in the second constraint. If we only want the WS2FIs for this WP main effect to be

clear, we change the limitations on constraints (2.8.1) and (2.8.2) as follows:

Yk + Zk + Xk < M(l-w,.S)+l,s= P, +1 ... P, + P 2  (2.8.1)

Yk +zk +xk < M(I-,t)+,s = P, +1 . .. PI +P2 (2.8.2)

Thus, adding constraints (2.7), (2.8.1) and (2.8.2) restrict the solution space for the

IP model so that all feasible solutions meet the customized constraint. The objective

function then acts as a secondary goal of maximizing the number of clear 2FIs.

Example 1: 16-run FFSP design

Suppose we have a case with 3 whole plot factors and 5 subplot factors. We will

further assume only 2-level FFSP designs are considered. In order to obtain at least a

Resolution III design, we must have more than 8 runs to estimate the main effects, so we

will consider a 16-run design and look at 2 cases for various numbers of whole plots.

Case 1: 4 WPs and 4 SP runs for each WP.

This case allows for up to 3 WP factors and 12 SP factors in a fully saturated design.

We require 3 WP factors and 5 SP factors, "saturating" the WP part of the design. This

number of WPs also limits out design to Resolution II. This is confirmed by the IP
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model, since having constraint (2.6) in the model results in an infeasible model

formulation.

For a Resolution III design, we remove constraint (2.6) from the model. The

resulting model produces a design with 7 clear 2FIs shown in Table 3.

Table 3: 16-run Res III FFSP with 4 WPs and 7 clear 2FIs

S rlda2rd I P t# WPfadors SPfac:ot

order p A a C DAD D AS)
1 1 4 -1 1 -i -1 1 1 -1
2 1 -1 -1 1 -1 1 -1 -1 1
3 1 -1 -1 1 1 -1 1 1 -1
4 1 4 -1 1 1 1 -1 -1 1

5 2 -1 1 -1 -1 -1 1 -1 1

6 2 -1 1 -1 -1 1 -1 1 1
7 2 -1 1 -1 1 -1 1 -1 1
8 2 -1 1 -1 1 1 -1 1 1

9 3 1 -1 -1 -1 -1 -1 1 1
10 3 1 -1 -1 - 1 1 -1 -1

11 3 1 -1 -1 1 -1 -1 1 1
12 3 1 -1 -1 1 1 1 -1 -1

13 4 1 1 1 -1 -1 -1 -1 -1
14 4 1 1 1 -1 1 1 1 1
15 4 1 1 1 1 -1 -1 -1 -1
16 4 1 1 1 1 1 1 1 1

All main effects are aliased with 3 2FIs, except for one SP factor, C, which is

completely clear of any 2FIs. Also, the 7 clear two-factor interactions are those that

involve subplot factor C. This design could be very useful when we are primarily

concerned with the effect of one of the SP factors.

Note this design is "saturated" in the WP design, with effectively only 4 runs (4

whole plots) at the WP level. This allows for only 4 degrees of freedom to estimate the

grand average and the effect estimates of the 3 WP factors. With all the degrees of

freedom used, we are limited in testing the significance of the WP main effects.
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Case 2: 8 WPs and 2 SP runs for each WP.

The second case for a 16-run FFSP design involves 8 WPs where there are only 2 SP

runs for each WP. This corresponds to having n, = 3 and k, = 0 for the WP design and

n2 = 5 and k, = 4 for the SP design. From the set of 15 letter combinations, the first 7

represent candidates for the 3 WP factors and the remaining 8 are available for the 5 SP

factors. This is represented in the IP model by adjusting constraints (2. 1. 1) and (2.1.2) as

follows:

7

XXk 3 (2.1.1)

15

xk = 5 (2.1.2)
8

Since Resolution IV designs are preferable, we initially model this case with

constraint (2.6). We quickly determine during the presolve that there is no feasible

solution to this IP formulation; hence we have no Resolution IV design available in a 16-

run FFSP design. Removing the Resolution IV constraint (2.6) from the provides us with

the design in Table 4.
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Table 4: 16-run Res III FFSP with 8 WPs and 2 clear 2FIs

Swaidard Plot# whmole OR~ Was Subpkit Womal
order A B C D AD SD ABD CD

1 1 -1 -1 -1 -1 1 1 -1 1
2 1 -1 4 -1 1 -1 -1 1 -1

3 2 4 -1 1 -1 1 1 -1 -1
4 2 -4 -1 1 1 -1 -1 1 1

S 3 -1 1 -1 -1 1 -1 1 1
6 3 -1 1 -1 1 -1 1 -1 -1

7 4 -1 1 1 -1 1 -1 1 -1
8 4 -1 1 1 1 -1 1 -1 1

9 S 1 -1 -1 -1 -1 1 1 1
10 5 1 -1 -1 1 1 -1 -1 -1

11 6 1 -1 1 -1 -1 1 1 -1
12 6 1 -1 1 1 1 -1 -1 1

13 7 1 1 -1 -1 -1 -1 -1 1
14 7 1 1 -1 1 1 1 1 -1

15 8 1 1 1 -1 -1 -1 -1 -1
16 8 1 1 1 1 1 1 1 1

None of the main effects are clear and there are only 2 clear 2FIs. Another

alternative design is presented by Bingham and Sitter (2001), where they look at

choosing where to split the SPD. In some cases, the system will force the experimenter

to know which factors should be treated as WP factors and which should be treated as SP

factors. In other systems, a SP factor can be treated as a WP factor, maintaining its level

throughout each WP, such as the design shown in Table 5.
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Table 5: 16-run Res III FFSP with 8 WPs treating one SP
factor (ABC) as a WP factor. There are 7 clear 2FIs

Suindard Sut t~pi bos 9bpkit WaonorderA B CAK D AD DA

1 1 -4 -1 -1 -1 -1 1 1 -1
2 1 -1 -1 -1 -1 1 -1 -1 1

3 2 -1 -1 1 1 -1 1 1 -1

4 2 4 -1 1 1 1 -1 -1 1

S 3 -1 1 4 1 -1 1 -1 1
6 3 -1 1 4 1 1 -1 1 -1

7 4 4 1 1 -1 -1 1 -1 1
8 4 -1 1 1 -1 1 -1 1 1

9 5 1 -1 -1 1 1 1 1 1
10 5 1 4 -1 1 1 1 -1 -1

11 6 1 -1 1 -1 -1 -1 1 1
12 6 1 -1 1 -1 1 1 -1 -1

13 7 1 1 -1 -1 -1 -1 -1 1
14 7 1 1 -1 4 1 1 1 1

15 8 1 1 1 1 -1 -1 -1 -1
16 8 1 1 1 1 1 1 1 1

This design provides 7 clear 2Fls in addition to the 8 clear main effects, but we have less

precision when estimating the SP main effect that was moved into the WP category since

it is tested against the WP error. While this strategy can be used in some situations, we

are assuming that the SP main effects in our systems must change throughout the whole

plot. Considering SP effects as WP factors is beyond the scope of this paper. Therefore,

due to the limited number of clear effects and the difficulty in changing "hard- to change

factors, we recommend using the design found in Case 1. Moreover, since running WP's

is usually more expensive, a possible alternative strategy is to replicate the design in Case

1. This will allow for testing the WP effects by only running the same amount of WP's

as in Case 2. Further improvements can be obtained in Case 1 by adding follow-up runs

as discussed in Almimi et al. (2008).
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Example 2: 32-run FFSP design

From the above cases, we see that there is no Resolution IV FFSP design with only

16 runs for 3 SP factors and 5 SP factors. In addition, there is little flexibility in

customizing the alias structure for the Resolution III design. In order to increase our

design resolution and gain more customization in estimating effects, we will look at 3

cases from the 32-run FFSP design: 4, 8, and 16 whole plots.

Case 1: 4 WPs and 8 SP runs for each WP.

With only 4 WPs, there is only one choice for the WP factors, [ A B AB 1, while the

remaining 28 letter combinations are candidates for the 5 SP factors. Once again, this

restriction at the whole plot level limits our design to Resolution III, so we will not even

attempt to run the model with constraint (2.6). The IP formulation results in a Resolution

III design with 18 clear two-factor interactions.

Suppose we wish to customize this design by trying to isolate the WP main effects

and their 2FIs. Due to the number of WP runs, each WP factor must be aliased with a

WP2FI, so we will focus on clear WS2FIs. We systematically add constraints (2.8. 1) and

(2.8.2) for each WP factor to require their WS2FIs to remain clear. The design shown in

Table 6 allows for 15 clear 2FIs so that all WS2FIs for the 3 WP factors are clear.
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Table 6: 32-run Res III FFSP with 4 WPs and 15 clear
2FIs. All WS2FIs for the three WP factors are clear.

Sirdr Plt whpifdm Sp6tfaatmsorder A B AS C D E DE DE

1 1 -1 -1 1 -1 -1 -1 1 -

2 1 4 -1 1 -1 -1 1 -1 1

3 1 -1 -1 1 -1 1 -1 -1 1
4 1 4 -1 1 -1 1 1 1 -1
S 1 -1 -1 1 1 -1 -1 1 1
6 1 4 4 1 1 -1 1 -1 -1

7 1 4 -1 1 1 1 -1 -1 -1
8 1 -1 -1 1 1 1 1 1 1

9 2 -1 1 4 -1 -1 -1 1 -1
10 2 -1 1 -1 -1 -1 1 -1 1
11 2 -1 1 -1 -1 1 -1 -1 1

12 2 -1 1 -1 -1 1 1 1 -1
13 2 -1 1 -1 1 -1 -1 1 1

14 2 -1 1 -1 1 -1 1 -1 -1
1.5 2 41 1 4i 1 1 -I -1 4i

16 2 -1 1 -1 1 1 1 1 1

17 3 1 4 -1 -1 -1 1 -1

18 3 1 -1 4 -1 -1 1 -1 1
19 3 1 -1 -1 -1 1 -1 -1 1

20 3 1 -1 -1 -1 1 1 1 -1
21 3 1 4 -1 1 -1 -1 1 1
22 3 1 -1 4 1 -1 1 -1 -1
23 3 1 4 -1 1 1 -1 -1 -1
24 3 1 -1 -1 1 1 1 1 1

2S 4 1 1 1 -1 -1 -1 1 -1

26 4 1 1 1 -1 -1 1 -1 1
27 4 1 1 1 -1 1 1 1 1

28 4 1 1 1 -1 1 1 1 -1

29 4 1 1 1 1 -1 -1 1 1
30 4 1 1 1 1 -1 1 -1 -1
31 4 1 1 1 1 1 -1 -1 -1
32 4 1 1 1 1 1 1 1 1

We should note again that having only four WPs with 3 WP factors leaves no test for

significance among the WP effects.

Case 2: 8 WPs and 4 SP runs for each WP.

By changing the limits on the summations in constraints (2.1.1) and (2.1.2), we can

increase the number of WPs to 8, so letter groups corresponding to numbers 1 -- 7 are

candidates for the WP factors and the remaining 24 letter groups are candidates for the
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SP factors. Using the basic IP model with constraint (2.6) will find a Resolution IV

design with the greatest number of clear 2Fls. This results in a design with 13 clear two-

factor interactions. Next, we add constraints (2.7), (2.8.1) and (2.8.2) in a systematic

manner to customize the design by distributing the clear 2FIs, while maintaining our

design resolution. For this case, we can isolate all the 2Fls involving up to 2 of the WP

factors using the design in Table 7.
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Table 7: 32-run Res IV FFSP with 8 WPs and 13 clear
2FIs. All 2FIs for WP factors A and B are clear.

standard Ww" wxk k fw sa WfdtMeS
order A B C D AM E ABDE CDE

1 1 -1 -1 -1 -1 1 -1 1 -1
2 1 -1 -1 -1 -1 1 1 -1 1

3 1 -1 -1 -1 1 -1 -1 -1 1
4 1 -1 -1 -1 1 -1 1 1 -1

5 2 -1 -1 1 -1 -1 -1 1 1

6 2 -1 -1 1 -1 -1 1 -1 -1
7 2 1 -1 1 1 1 -1 -1 -1
8 2 -1 -1 1 1 1 1 1 1

9 3 -1 1 4 -1 -1 -1 -1 -1
10 3 -1 1 -1 -1 -1 1 1 1

11 3 4 1 -1 1 1 -1 1 1
12 3 -1 1 -1 1 1 1 -1 -1

13 4 -1 1 1 -1 1 -1 -1 1
14 4 -1 1 1 -1 1 1 1 -1

is 4 -1 1 1 1 -1 -1 1 -1
16 4 -1 1 1 1 -1 1 -1 1

17 S 1 -1 -1 -1 -1 -1 -1 -1

18 5 1 -1 -1 -1 -1 1 1 1

19 5 1 -1 -1 1 1 -1 1 1
20 S 1 -1 -1 1 1 1 -1 -1

21 6 1 -1 1 -1 1 -1 -1 1
22 6 1 -1 1 -1 1 1 1 -1
23 6 1 -1 1 1 ll -1 1 -1
24 6 1 -1 1 1 -1 1 -1 1

25 7 1 1 -1 -1 1 -1 1 -1
26 7 1 1 -1 -1 1 1 -1 1
27 7 1 1 -1 1 -1 -1 -1 1

28 7 1 1 -1 1 -1 1 1 -1

29 8 1 1 1 -1 -1 -1 1 1
30 8 1 1 1 -1 -1 1 -1 -1

31 8 1 1 1 1 1 -1 -1 -1
32 8 1 1 1 1 1 1 1 1

Removing constraint (2.6) results in a Resolution III design with 18 clear 2Fls.

Similar to the Resolution IV case, we can add the customized constraints to this IP model

to find the design in Table 8 where all three whole plot factors are clear along with their

WS2FIs.
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Table 8: 32-run Res III FFSP with 8 WPs and 18 clear
2FIs. All WS2FIs are clear from confounding.

St..Wad Pitt wimerlflr San"* Namr

order A AI C E ADM DE
1 1 -1 -1 -1 -1 1 -1 1 1
2 1 -1 -1 -1 -1 1 1 -1 -1
3 1 -1 4 4 1 -1 -1 1 -1

4 1 -1 -1 -1 1 -1 1 -1 1

S 2 -1 -1 1 -1 -1 -1 -1 1
6 2 -1 -1 1 -1 -1 1 1 -1
7 2 -1 -1 1 1 1 -1 -1 1
8 2 -1 4 1 1 1 1 1 1

9 3 -1 1 4 -1 -1 -1 -1 1
10 3 -1 1 -1 -1 -1 1 1 -1

11 3 4 1 4 1 1 -1 -1 -1
12 3 -1 1 -1 1 1 1 1 1

13 4 -1 1 1 -1 1 -1 1 1
14 4 -1 1 1 -1 1 1 -1 -1

15 4 -1 1 1 1 -1 -1 1 -1

16 4 -1 1 1 1 -1 1 -1 1

17 5 1 -1 -1 -1 -1 -1 -1 1
18 5 1 -1 -1 -1 -1 1 1 -1
19 5 1 4 -1 1 1 -1 -1 -1
20 5 1 4 -1 1 1 1 1 1

21 6 1 -1 1 -1 1 -1 1 1

22 6 1 -1 1 -1 1 1 -1 -1
23 6 1 4 1 1 -1 -1 1 -1
24 6 1 4 1 1 -1 1 -1 1

25 7 1 1 1 -1 1 1 1 1
26 7 1 1 -1 -1 1 1 -1 -1
27 7 1 1 -1 1 -1 -1 1 -1

28 7 1 1 -1 1 -1 1 -1 1

29 8 1 1 1 -1 -1 -1 -1 1
30 8 1 1 1 -1 -1 1 1 -1
31 8 1 1 1 1 1 -1 -1 -1
32 8 1 1 1 1 1 1 1 1

The customized constraints can also be used to isolate SP factors and their

interactions. If we add constraints (2.7), (2.8.1), and (2.8.2) for factors [ A B D E 1. we

find the design in Table 9 where the 2 WP factors A and B and their WS2FIs are clear.

In addition, the 2 SP factors D and E are clear along with their WS2FIs with all WP

factors.
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Table 9: 32-run Res III FFSP with 8 WPs and 18 clear
2FIs. All WS2FIs for WP factors A and B and SP factors
D and E are clear from confounding.

order_ _ A O M m E OCE am
1 1 -1 -1 1 -1 -1 -1 -1 1

2 1 -1 -1 1 -1 -1 1 1 -1
3 1 -1 -1 1 1 1 -1 -1 -1

4 1 4 -1 1 1 1 1 1 1

5 2 -1 -1 - -1 1 -1 1 -1

6 2 -1 -1 -1 -1 1 1 -1 1
7 2 -1 -1 -1 1 -1 -1 1 1

8 2 -1 -1 -1 1 -1 1 -1 -1

9 3 -1 1 1 -1 1 -1 1 -1
10 3 -1 1 1 -1 1 1 -1 1

11 3 -1 1 1 1 -1 -1 1 1
12 3 4 1 1 1 -1 1 -1 -1

13 4 -1 1 -1 -1 -1 -1 1
14 4 4 1 -1 -1 -1 1 1 -1
15 4 -1 1 -1 1 1 -1 -1 -1

16 4 -1 1 4 1 1 1 1 1

17 5 1 -1 1 -1 1 -4 1 -1

18 5 1 -1 1 -1 1 1 -1 1

19 5 1 -1 1 1 -1 -1 1 1
20 5 1 -1 1 1 -1 1 -1 -1

21 6 1 4 1 -1 1 -1 1

22 6 1 -1 4 -1 -1 1 1 -1

23 6 1 -1 -1 1 1 -1 -1 -1

24 6 1 -1 -1 1 1 1 1 1

25 7 1 1 1 -1 -1 1 -1 1
26 7 1 1 1 -1 -1 1 1 -1

27 7 1 1 1 1 1 -1 -1 -1

28 7 1 1 1 1 1 1 1 1

29 8 1 1 -1 -1 1 -1 1 -1

30 8 1 1 -1 -1 1 1 -1 1

31 8 1 1 -1 1 -1 -1 1 1
32 8 1 1 -1 1 - 1 -4 -1

Case 3: 16 WPs and 2 SP runs for each WP.

The final case for a 32-run FFSP design involves 16 WP's with n, = 4, k, = 0.,

n2 = 5 and k2 = 4. However, since we only have 3 WP factors, we can only distinguish

between 8 different plots, so with 16 plots we are actually running two replicates of an 8
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plot design at the WP design level. We modify constraints (2.1.1) and (2.1.2) to partition

the candidate letter combinations as follows:

15

Xk =3 2.1.1)

31

EXk = 5 (2.1.2)
16

Running the IP model for a Resolution IV design yields a design with 13 clear 2Fls.

In an attempt to customize this design using constraints (2.8.1) and (2.8.2), we find that it

is impossible to isolate any WP factors and their WS2FIs. However, we are able to add

these constraints and isolate SP factor E and its WS2FIs in following design.
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Table 10: 32-run Res IV FFSP with 2 replicates of the 8
WPs and 13 clear 2FIs. SP factor E and its entire cross
2FIs are clear from confounding.

SIuniard PSCt WorsxsSIfa
order A B C E ACE ADE CECDE

1 1 -1 -1 -1 -1 1 -1 -1 -1
2 1 -1 -1 -1 1 -1 1 1 1

3 2 -1 -1 1 -1 -1 -1 1 1
4 2 -1 -1 1 1 1 1 -1 -1

5 3 -1 1 -1 -1 -1 -1 -1 1
6 3 -1 1 -1 1 1 1 1 -1

7 4 -1 1 1 -1 1 -1 1 -1
8 4 -1 1 1 1 -1 1 -1 1

9 5 1 -1 -1 -1 -1 1 -1 1
10 5 1 -1 -1 1 1 -1 1 -1

11 6 1 -1 1 -1 1 1 1 -1
12 6 1 -1 1 1 -1 -1 -1 1

13 7 1 1 -1 -1 1 1 -1 -1
14 7 1 1 -1 1 -1 -1 1 1

15 8 1 1 1 -1 -1 1 1 1
16 8 1 1 1 1 1 -1 -1 -1

17 9 -1 -1 -1 -1 1 1 1 1
18 9 -1 -1 -1 1 -1 -1 -1 -1

19 10 -1 -1 1 -1 -1 1 -1 -1
20 10 -1 -1 1 1 1 -1 1 1

21 11 -1 1 -1 -1 -1 1 1 -1
22 11 -1 1 -1 1 1 -1 -1 1

23 12 -1 1 1 -1 1 1 -1 1
24 12 -1 1 1 1 -1 -1 1 -1

25 13 1 -1 -1 -1 -1 -1 1 -1
26 13 1 -1 -1 1 1 1 -1 1

27 14 1 -1 1 -1 1 -1 -1 1
28 14 1 -1 1 1 -1 1 1 -1

29 15 1 1 -1 -1 1 -1 1 1
30 15 1 1 -1 1 -1 1 -1 -1

31 16 1 1 1 -1 -1 -1 -1 -1
32 16 1 1 1 1 1 1 1 1
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For a Resolution III design, we are able to find a design with 18 clear 2Fls. Adding

the customized constraints allows us to find the design in Table II with WP factor A and

SP factor E clear, along with their WS2FIs.
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Table 11: 32-run Res III FFSP with 2 replicates of the 8
WPs and 18 clear 2FIs. WP factor A and SP factor E are
clear along with their cross 2FIs.

Standard Plot # WP factors SP factors

order A B C E ASCE ADE ABDE ACDE

1 1 -1 -1 -1 -1 1 -1 1 1
2 1 -1 -1 -1 1 -1 1 -1 -1

3 2 -1 -1 1 -1 -1 -1 1 -1
4 2 -1 -1 1 1 1 1 -1 1

5 3 -1 1 -1 -1 -1 -1 -1 1

6 3 -1 1 -1 1 1 1 1 -1

7 4 -1 1 1 -1 1 -1 -1 -1
8 4 -1 1 1 1 -1 1 1 1

9 5 1 -1 -1 -1 -1 1 -1 -1

10 5 1 -1 -1 1 1 -1 1 1

11 6 1 -1 1 -1 1 1 -1 1
12 6 1 -1 1 1 -1 -1 1 -1

13 7 1 1 -1 -1 1 1 1 -1

14 7 1 1 -1 1 -1 -1 -1 1

15 8 1 1 1 -1 -1 1 1 1
16 8 1 1 1 1 1 -1 -1 -1

17 9 -1 -1 -1 -1 1 1 -1 -1

18 9 -1 -1 -1 1 -1 -1 1 1

19 10 -1 -1 1 -1 -1 1 -1 1
20 10 -1 -1 1 1 1 -1 1 -1

21 11 -1 1 -1 -1 -1 1 1 -1
22 11 -1 1 -1 1 1 -1 -1 1

23 12 -1 1 1 -1 1 1 1 1

24 12 -1 1 1 1 -1 -1 -1 -1

25 13 1 -1 -1 -1 -1 -1 1 1
26 13 1 -1 -1 1 1 1 -1 -1

27 14 1 -1 1 -1 1 -1 1 -1

28 14 1 -1 1 1 -1 1 -1 1

29 15 1 1 -1 -1 1 -1 -1 1

30 15 1 1 -1 1 -1 1 1 -1

31 16 1 1 1 -1 -1 -1 -1 -1
32 16 1 1 1 1 1 1 1 1
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Both of these designs will provide more accuracy in estimating the effects of the WP

factors due to the replication at the WP level. However; there's a huge trade-off for this

accuracy advantage. First, we have to change the WP factors 16 times, which defeats the

purpose of running the experiments in a split plot mode to avoid changing the hard-to-

change factors frequently. Second, neither the Resolution III nor the Resolution IV

design for this case provides a lot of flexibility in the alias structure. We would

recommend running 8 WPs in a 32-run design. Not only does this allow you to test for

significance on the main effects, but there's enough flexibility to isolate several of the

main effects and their 2FIs.

Example 3: 64-run, 29-'FFSP design

Suppose an experimenter wants to perform a 64-run, 2 "-3 design. Also. suppose this

experimenter wants to estimate all 2FIs of six of these nine factors. The minimum MA

FF design from Chen, Sun and Wu (1993) will not allow for the estimation of all 2Fls of

any six factors, but Bingham and Sitter (1999) use a MA FFSP design to isolate all six

factors into the SP with their 2FIs clear of other main effects and other 2Fls. This

satisfies the original experimenter's goal for the effect estimates of the 2 ' -3 design;

however, what if the experimenter did not want all the clear 2Fls to involve only the SP

factors, but instead 4 WP factors and 2 SP factors. Let's set up our IP formulation on a

FFSP design with n, = 5 and k, = 1 for the 16-run WP part of the design and n2 = 4 and

k2 = 2 for the 4-run SP design within each whole plot. Applying constraints (2.7),

(2.8.1) and (2.8.2) to the four whole-plot factors [ A B C D ] and the two subplot

factors [ E F ] sets up an appropriate IP formulation to meet this goal. We are also using



39

constraint (2.6) to maintain a Resolution IV design. The resulting IP model yields the

feasible solution shown in Table 12, with a total of 30 clear two-factor interactions.

Table 12: 64-run Res IV FFSP with 16 WPs and 30 clear
2FIs. Factors [A B C D E F ]are all clear along with
their 2FIs.

Standard PIot # Woa9 lt, s. 6p;oa f.c1W

Iold, pltderd A 8 C 0 ACO a SE O

1 1 -1 -1 - -1 -1 - -1 1 1

2 1 -1 -1 -1 -1 -1 - 1 1 -1
3 1 -1 -1 -1 -1 -1 1 -1 -1 1

4 1 -1 -1 -1 -1 -1 1 i -1 -,

5 2 -1 -1 -1 1 1 -1 *1 -1 -1

6 2 -1 -1 -1 1 1 -1 1 -1 1

7 2 -1 -1 -, 1 1 I - a -

9g 3 -1 -1 1 -1 1 -1 -1 1 -1

10 3 -1 -1 1 -1 1 -1 1 1 1

11 3 -1 -1 1 -1 1 1 -1 -1 -1

12 3 -1 -1 1 -1 I 1 1 -1 1

13 4 -1 -1 1 1 -1 1 -1 -1 1
14 4 -1 -1 1 1 -1 1 1 -1 -1

15 4 -1 -1 1 1 -1 1 -1 1 1

16 4 -1 -1 1 1 -1 1 1 1 -1

17 9 -1 1 -1 -1 -1 -1 -1 -1 -1

14 9 -1 1 -1 -1 -1 -1 1 -1 1
19 S -1 1 -1 -1 -1 1 -1 1 -1

20 5 -1 1 -1 -1 -1 1 1 1 1

21 6 -1 1 -1 1 1 1 -1 1 1

22 6 -1 1 -1 1 1 -1 1 1 -1

23 6 -1 1 -1 1 1 1 -1 -1 1

24 6 -1 1 -1 1 1 1 1 -1 -1

25 7 -1 1 1 -1 1 -1 -1 -1 1

26 7 -1 1 1 -1 1 -1 1 - 1
27 7 -1 1 1 -1 1 1 -1 1 1

28 7 -1 1 1 -1 1 1 1 1 -1

29 4 -1 3 1 1 -1 -1 -1 1 -1

30 4 -1 1 1 1 -1 1 1 1 1

31 4 -1 1 1 1 -1 1 -1 1 1

32 4 -1 1 1 1 -1 1 3 1 1

33 9 1 1 -1 -1 1 -1 -1 -1 1

34 9 1 -1 -1 1 1 -1 1 1 1

35 9 1 1 -1 -1 1 1 -1 1 1

36 9 1 1 1 -1 1 1 1 1

37 10 1 1 1 1 -1 -1 1 1 1

39 10 1 -1 1 1 -1 1 -1 1 -1

40 10 1 -1 -1 1 -1 1 1 -1 1

41 11 1 -1 1 -1 -I -1 -1 - -1

42 11 1 -1 1 -1 -1 -1 1 -1 1

43 11 1 1 1 .1 -1 1 -1 1 -1
44 11 1 -1 1 -I -1 1 1 1 1

45 12 1 -1 1 1 1 -1 -1 1 1

46 12 1 -1 1 1 1 -1 1 1 -1

47 12 1 -1 1 1 1 1 -1 -1 1

48 12 1 - 1 1 1 1 1 -1 -1

49 13 1 1 -1 -1 1 -1 -1 1 -1
50 13 1 1 -1 -1 1 -1 1 1 1

51 13 1 1 -1 -1 1 1 -1 -1 -1

52 13 1 1 -1 -1 1 1 1 -1 1

53 14 1 1 -1 1 -1 -1 -1 -1 1

54 14 1 1 -1 1 -1 -1 1 -1 -1
15 14 1 1 -1 1 1 1 -1 1 1

56 14 1 1 -1 1 -1 1 1 1 1

57 19 1 1 1 -1 -1 -1 -1 1 1
94 19 1 1 1 1 -1 1 1 1 1

60 15 1 1 1 -1 -1 1 1 1 -1

61 16 1 1 1 1 1 -1 -1 -1 1

62 16 1 1 1 1 1 1 1 1 1

63 16 1 1 1 1 1 1 1 1 164 16 1 1 1 1 1 1 1 1
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Example 4: Comparison with computer-generated optimal designs

We now consider one of our previous examples to compare it with the design we

would obtain from a widely-used statistical DOE software package, JMP 6.0. We will

focus on the 32-run FFSP from Example 2 - Case 1, where there are 4 WPs in the design.

JMP allows the user to select the number of runs, plots, and distinguish between hard-to-

change (WP) and easy-to-change (SP) factors. The D-optimal design matrix for the

scenario from Example 2 - Case I provided by JMP is shown in Table 13 (sorted by

factors [A B P Q R] respectively).
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Table 13: D-Optimal design provided by JMP for 32-run
FFSP estimating all WS2FIs for WP factors.

ce A B C P Q R S T
1 1 4 4 - 1 -1 -1 1 -1
2 1 4 -1 1 -1 1 -1 1

3 1 -1 -1 -1 -1 1 -1 1 1

4 1 -1 -1 -1 -1 1 1 -1 -1

S 1 -1 -1 - 1 -1 -1 -1 1
6 1 -1 -1 -1 1 -1 1 1 -1

7 1 -1 -1 -1 1 1 -1 -1 -1
8 1 -1 -1 -1 1 1 1 1 1

9 2 -1 1 1 -1 1 1 -1 1
10 2 -1 1 1 -1 -1 1 1 1

11 2 -1 1 1 1 1 -1 1 1
12 2 4 1 1 1 1 1 - 4
13 2 -1 1 1 1 -1 -1 -1 -1

14 2 4 1 1 1 -1 1 1 1

15 2 4 1 1 1 1 -1 1 -
16 2 4 1 1 1 1 1 -1 1

17 3 1 -1 1 -1 -1 -1 1 1
is 3 1 4 1 -1 -1 1 -1 1
19 3 1 4 1 -1 1 -1 -1 1

20 3 1 -1 1 -1 1 1 1 -1
21 3 1 4 1 1 -1 -1 -1 -1
22 3 1 -1 1 1 -1 1 1 1
23 3 1 -1 1 1 1 -1 1 -1

24 3 1 4 1 1 1 1 -1 1

25 4 1 1 -1 -1 -1 -1 -1 1

26 4 1 1 -1 -1 -1 1 1 1

27 4 1 1 -1 -1 1 -1 1 1

28 4 1 1 -1 -1 1 1 -1 -1
29 4 1 1 -1 1 -1 -1 1 -1

30 4 1 1 -1 1 -1 1 -1 -1
31 4 1 1 4 1 1 -1 1 1
32 4 1 1 - 1 1 1 1 1

This design matrix looks very similar to the one in Table 6 generated using our IP

formulation. Both designs are for a 32-run Resolution III FFSP design with 4 WPs

having 3 WP factors and 5 SP factors. Both designs also provide enough degrees of

freedom to estimate the WS2FIs between WP and SP factors. Since we are using the IP

formulation to model a first-order FFSP design which is orthogonally blocked, then our

design matrix is also D-optimal when modeling main effects and unconfounded
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interaction effects. However, the big difference lies in the simplicity of our alias

structure, with our approach leading only to regular designs while JMP does not have this

restriction. Table 14 shows the alias structure using the design using our IP formulation

from Table 6. This structure is regular, meaning all the coefficients are either 1 or -1, and

our customization of constraints allowed us to ensure the 15 2Fls between WP and SP

factors were clear of other main effects or 2FIs.

Table 14: Alias structure for 32-run Res III FFSP design
with 4 WPs provided by IP model. 15 clear 2FIs including
all cross 2FIs between WP and SP factors.

Main effects aliased with 2Fl within own Plot structure
A = BC
B = AC
C = AB
P = ST
Q= RS
R = QS

S = PT + QR
T = PS

15 clear 2FIs involvins WP factors and SP factors
AP, AQ, AR, AS, AT, BP, Bq BR, BS, BT, CP, CCL CR, CS, CT

Remainina 2FIs
PQ= RT
PR = QT

On the other hand, Table 15 shows the irregular alias structure provided by the FFSP

design generated by the JMP software. Not only does it have fractional coefficients in

the alias structure, but the JMP package does not allow the user to ensure which effects

are completely clear from confounding. The user can only specify which effects are

estimatable.
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Table 15: Alias structure for 32-run Res III FFSP design
with 4 WPs provided by JMP software. No clear 2FIs.

Main Effects
A = -BC

B=-AC

C=-AB

P = 0.25 QT + 0.25 * RS + 0.5 * RT
Q = 0.25 PT - 0.25 * RS
R = 0.25 PS + 0.5 * PT - 0.25 * QS + 0.25 ST
S = 0.25 * PR -0.25 * QR + 0.25* RT
T = 0.25 PQ+0.5 * PR +0.25 * RS
Remainina 2FIs
AP = 0.25' QT- 0.25 RS
AQ= 0.25 * PT + 0.25 * RS-0.5 * ST
AR= - 0.25 PS + 0.25 QS + 0.25 * ST
AS= -0.25 PR + 0.25 QR - 0.5 * QT + 0.25 RT
AT =0.25 PQ- 0.5 * QS + 0.25 * RS

BP = 0.25 *QT - 0.25 * RS
BQ = 0.25 * PT - 0.25 * RS
BR = - 0.25 * PS - 0.25 QS + 0.25 * ST

BS= - 0.25 ' PR - 0.25 QR + 0.25 ' RT
BT =0.25 * PQ+ 0.25 RS
CP= - 0.25 *QT - 0.25 * RS + 0.5 RT
CQ 0.25 PT - 0.25 * RS - 0.5 'ST
CR -0.25 * PS + 0.5 * PT -0.25 QS - 0.25 ST
CS =-0.25 PR - 0.25 QR - 0.5 QT - 0.25 RT
CT=-0.25 *PO+0.5*PR-0.5*O.S-0.25*RS

This same structure difference occurs for all the example cases we have shown in

this paper. JMP does not have the option to isolate clear effects or 2FI, whereas our IP

model does have this functionality. Also, JMP returns irregular D-optimal designs, but

our IP model always returns regular D-optimal designs for feasible solutions. For all of

the example cases, our designs were generated using AMPL 9.1 with CPLEX solver

engine and took less than 15 seconds to solve for the feasible designs. For infeasible

design formulations, such as Resolution IV designs with only 4 whole plots, AMPI.

would immediately return an infeasible error message.

Conclusion

We have discussed a new approach to representing and designing FFSP simply by

using the binary representation of their letter notation instead of referencing the design
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matrix. This eliminates the need to calculate the alias matrix using complex matrix

multiplication and the inverse function. By formulating the problem using Integer

Programming, we can immediately determine if our custom requirements are feasible. In

addition, due to the nature of IP formulation, the more constraints we put on the model,

the easier it is to find the optimal solution, since we are further shrinking the solution

space.



CHAPTER 3: GENERATING BLOCKED FRACTIONAL FACTORIAL

DESIGNS USING INTEGER PROGRAMMING

Introduction

Two-level fractional factorial (FF) designs are very useful for screening experiments

(Box & Hunter, 1961); however, limitations on changing some factors can make the

experiment very expensive, time-consuming, or even impossible to perform in a

completely random order. Thus, a randomization restriction can be imposed on the

design to create a split-plot structure. FF split-plot (FFSP) designs use FF designs fbr the

whole plot/subplot structures to accommodate the randomization restriction and are

orthogonal (Kempthorne, 1998). Originating from the agricultural field, the hard-to-

change factors, or large areas of land, comprised the whole plots (WPs), while subplots

(SPs) of land within these large areas were considered easy-to-change (Yates, 1935).

When all the runs cannot be performed under the same conditions, the FFSP designs

are split into blocks. For example, time constraints on running each experimental unit

may limit the number of units that can be processed in a single day of work. There may

be unintended variations in the process when the system is shut down at the end of the

day or prepared for operation at the beginning of the next day for experiments. In order

to account for variability between days, each day is considered a block. Blocking can

also be used on process material when there is not enough of the same batch to proceed

with all the experimental runs. There has been several publications involving blocking 2-
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level FF designs (Chen, Sun, & Wu, 1993; Kulahci, 2007; Zhang & Park, 2000), but very

little attention has been paid to blocking FFSP designs.

Several authors have already made tables of FFSP designs when using common

design criteria. Bingham and Sitter (1999; 2001) presented tables for 8-, 16-, and 32-run

FFSP designs using a Minimum Aberration (MA) design criterion. The MA design

criterion (Fries & Hunter, 1980) provides a way to distinguish between designs of

maximum resolution. Another criterion is the maximum number of clear 2FIs. Wu and

Wu (2002) refer to these designs as MaxC2 designs and discuss the rules regarding this

criterion for fractional factorials. Although not limited to balanced FFSP designs, Goos

and Vandebroek (2001; 2004) have studied optimal split-plot designs using D-optimality.

Goos (2002) proved that split-plot designs where the levels of the sub-plot factors sum to

zero within each whole plot are D-optimal. Jones and Goos (2007) describe an algorithm

for finding tailor-made D-optimal FFSP designs that can handle flexible choices of

sample size, both continuous and categorical factors, and may include interaction terms

of any order. Kulahci et al. (2006) present a compelling argument for custom FFSP

designs not simply based on a single criterion, but based on the alias structure, including

estimating certain types of clear two-factor interactions.

In a previous publication (Capehart, Keha, Kulahci, & Montgomery, 2008), we

provide an integer programming (IP) model to generate optimal FFSP designs for user-

defined criteria based on clear main effects and two-factor interactions (2FIs). In this

paper, we extend the previous work to blocked designs.

46
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Blocking FFSP Designs

McLeod and Brewster (2004) look at blocking MA FFSP designs to provide -good"

BFFSP designs for estimating WP and SP main effects and their 2FIs. They break down

the blocking effects for these designs into three categories. Pure WP blocking involves

generating blocking variables using only WP factors. Separation blocking uses blocking

generators consisting of SP factors alone or a mix of WP and SP factors. Finally, mixed

blocking involves both pure WP blocking and separation, where some of the blocking

variables are pure WP, and separation, where other blocking variables include some SP

factors. They provide a table for 32-run MA BFFSP designs based on this approach. In

order to further distinguish between designs with the same word length pattern (WLP)

and provide more information on the estimation capabilities of the various designs, they

use following secondary optimality criteria:

i. The number of clear main effects

2. The number of clear 2FIs

3. The number of clear SP main effects

4. The number of clear SP 2FIs

5. The number of clear SP main effects tested against WP error

6. The number of clear SP 2FIs tested against WP error

Criteria (5) and (6) look at which error term should be used to determine the significance

of the specified contrast. When analyzing split-plot designs, the significance of the

factors is determined by comparing the WP treatment sum of squares (SS) to the WP

error term and the SP treatment SS to the respective SP error term. Sometimes the alias

47
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structure may cause confusion in determining which error term to use. Bisgaard (2000)

discusses this when analyzing split-plot designs and his results are summarized by the

following three rules (Bingham & Sitter, 2001):

1. WP main effects and interactions involving only WP factors are compared to

the WP error.

2. SP main effects or interactions that are aliased with WP main effects or

interactions involving only WP factors are compared to the WP error.

3. SP main effects and interactions involving at least one SP factor that are not

aliased with WP main effects or interactions involving only WP factors are

compared to the SP error.

McLeod and Brewster (McLeod & Brewster, 2006) follow their work on screening

BFFSP designs by looking at blocked designs for Robust Parameter Designs (RPDs).

RPDs involve two types of factors: control and noise. Control factors can be controlled

during the production process, while the noise factors represent changes to the production

process that cannot be controlled at the time of production. In order to achieve products

that are robust to the variability in the noise factors, the experimenter is interested in

designing the experiment to estimate the control effects and control-by-noise interactions.

Goos and Vandebroek (2001) point out that split-plot designs cause a loss in

precision in estimating the whole plot coefficients, while increasing the precision in

estimation of the sub-plot coefficients and the whole plot by sub-plot interactions. Box

and Jones (1992) show that the error variance for the whole-plot and subplot surround

that of the error variance for a completely randomized design (CRD), where
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b2 < 2 he Similar research showing the increased precision for the subplot
0

CRIu < "whrIe shwn•rcso upo

treatments is found in Kulahci et al. (2006). There is little interest in estimating the noise

effects for RPDs, since they cannot be controlled, so most researchers choose to run an

RPD experiment as a split-plot design, with the control factors at the SP level and noise

factors at the WP level to increase the precision for the effects we are interested in.

As with their other publication (McLeod & Brewster, 2004), these authors provide

tables of optimal BFFSP designs first based on MA criteria. The secondary criteria are

slightly different from the 2004 paper:

1. Number of clear control main effects

2. Number of clear control-by-noise 2FIs

3. Number of clear control-by-control 2FIs

4. Number of clear control main effects tested against WP error

5. Number of clear control-by-noise 2FIs tested against WP error

6. Number of clear control-by-control 2Fls tested against WP error

Yang et. al. (2006) provide Theorems and Lemmas discussing the parameters of

BFFSP designs that will have clear main effects and/or 2FIs. They define 2FIs into three

categories: whole plot-by-whole plot (WP2FI), subplot-by-subplot (SP2FI), and whole

plot-by-subplot (WS2FI), but they do not specify the number of clear 2FIs or specifically

which factors are involved in designs with clear 2Fls. Nor do their Theorems or Lemmas

discuss the number of clear main effects. McLeod (2007) provides a catalog of optimal

block sequence for 32-run MA BFFSP designs; however, the sequencing of the blocks is

beyond the scope of our research.
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The following assumptions are common in the generation of most BFFSP designs

(Jacroux, 2006):

" Hierarchical ordering principle: lower order treatment effects are more likely

to be significant than higher order treatment effects and effects of the same

order are equally likely to be significant.

" Three-factor and higher order treatment interactions are negligible.

* An interaction between block effects is of equal importance to a block main

effect.

* Treatment-by-block interactions are negligible.

* Block effects are more likely to be significant than treatment effects.

The Chrome-Plating Experiment

In this section, we provide a brief overview of a case study McLeod and Brewster

considered when creating BFFSP designs for screening purposes and from an RPD

perspective. An aerospace company wants to identify the factors affecting excessive

pitting and cracking, as well as bad adhesion and smoothness of chrome across one of the

parts in its chrome-plating process. Six factors were identified for this experiment: A.

chrome concentration; B, chrome to sulfate ratio; C, bath temperature; p, etching current

density; q, plating current density; and r, part geometry. Each factor has two levels.

Three of the factors, A, B, and C, were considered WP factors since they were

characteristics of the bath where the plating occurred and could only be changed once per

day. The other three factors, p, q, and r, were easy to change and therefore considered SP

factors. Since there was a restriction in the randomization of the factors, due to the
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difficulty in changing the WP factors, the company chose to run the experiment as split-

plot design.

Two parts could be plated each day in the bath, and there was 16 days available for

the experiment, resulting in 32 parts being plated. Instead of using a full factorial design

(26 = 64 ), this was a half fractional factorial design. The company also chose to divide

the 16 experiment days into four 4-day weeks, and consider each week as a block. All of

these constraints resulted in a BFFSP design with a 4:4:2 structure. The structure for a

BFFSP design consists of three numbers: number of blocks, numbers of WPs per block,

and number of SPs per WP. The aerospace company was running a design with 4 blocks,

4 WPs per block, and 2 SPs per WP in their chrome-plating experiment.

Model Representation

Consider a Fractional Factorial (FF) design with 2
"k runs. There are n total factors

in the design, along with k fractional generators. In such designs, the first n - k factors

are considered basic factors. The basic factors can be represented by single letters

(Franklin & Bailey, 1977), while the remaining generators are formed using the

interaction of these single letter factors. There exists a set of 2 "' k - I letter groups formed

using the letter group notation, which can be arranged using Yates order as follows:

[A B AB ... D AD BD ABD ...]

As indicated above, in this notation there will be n-k columns represented with a

single letter, whereas the rest of the columns in which the remaining factors can be

allocated are represented as the combinations of these n - k single letters. Let's consider

the 16-run 26 -2 FF design shown in Table 16.
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Table 16: 16-run Fractional Factorial design partitioned
into 8 plots.

A B C D E:ABC F=BCD
-1 *1 -1 -1 -1 -1

I
-1 -1 -I 1 -1 1

-1 -I 1 -I 1 I
2 -1 -1 1 1 1 -1

3 -1 1 -1 "1 1 1

-1 1 -1 1 1 -I
-1 1 1 -1 -I -I.

.4 -I £ 1 1 -1 1
5 1 "I -I "1 1 "I

7

I -I -I 1 1 -1

1 1 -1 1 1 -1
I I 1 -I I -I

(L- i) AB(©AC BC g DAD 13D ABD CD ACD ABCD]

We can also see that this design can be split into 8 WPs, with each WP having two

SP runs. The 8 WPs require three basic factors, [A B C], with factor E being a WP

design generator. The subplot design within each WP requires one basic factor, [D],

with factor F as a SP design generator. While this design matrix helps to recognize the

whole plots, when the experiment is run, the 8 WPs will be arranged in random order.

and the runs within each WP will be arranged in random order. The Yates Order allows

us to partition the letter groups into WP and SP factor candidates as follows:

WP Factor Candidates SP Factor Candidates

'ii

[w Ww ... S" w Ws. W.W ..]
WP asc foctols SF' bo'a fa tor

For these types of designs, we are only considering SPDs where the system dictates

which factors should be WP factors and which should be SP factors. For further options
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on choosing where to split/fractionate the design and allow SP factors to be placed at the

WP level, see Bingham and Sitter (2001).

In Capehart et al. (2008), we demonstrated how to represent each letter group

combination as a numeric value using a reverse form of binary conversion based upon

each single letter. For example, a 32-run FF design with 5 single letters, ABCDE, has

letter group ABD=AB_D_= 11010 in binary notation, which can be converted to a

numeric value of 11 using reverse binary conversion. This numeric notation and

conversion method matches the Yates order in ascending numeric order.

[A B AB ... D AD BD ABD ... ]

[ 1 2 3 ... 8 9 10 11 ...]

For FF designs, we are often interested in estimating main effects and two-factor

interactions (2FIs), so it is interesting to note that this set is closed under multiplication.

Thus, all 2FIs of the k letter groups can be simplified back into the same set. For

example, if factor D is selected and one of the fractional generators is represented by the

letter group BCD, their 2FI corresponds to the (D)(BCD)=BC letter group. Table 17

represents all 465 2FIs and the letter group they correspond to using this numbering

scheme for a 32-run FF design.
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Table 17: Numeric values for two-factor interactions (Row
x Column) of letter groups from a 32-run FF design.

2 3 4 5 6 7 8 9 10111211311411516171181191202122232425262728293031
1 3 2 5 4 7 6 9 8 11101312151417161918212023222524272629283130
2 - 1 6 7 4 5 1011 8 9 1415112 13 18 19116117222320211262724 2530312829
3 - 7 6 5 4 11 10 9 8 1514131219181716232221202726252431302928

4 - - 1 2 3 12131415 8 9 101120212223161718192829303124252627
5 - - 3 2 13112 15 14 9 8 11 10212023 22 1716 191181292831 3025 242726
6 -- - 1 14115 12 131011 8 9 22 2320 21 18 19 16 1713031 28 2926 272425
7 ------ 15114 13 1211 109 8 23 2221120 19 18 17 161313029 2827 262524
8 --------- 1 2 3 4 5 6 7 24252627282930311617181920 212223
9 --- 3 2 5 4 7 6252427262928313011716191821202322

10 --------- - 1 6 7 4 5 2627242530312829 1819 16172223 2021
11-- ------- - 7 61514 27 26251243130 2928 19 18 17 1623 22 2120
12 -------------- 1 2 3 282930 312425262720212223161171819
13 ------ ----- - -- 3 2 292831302524272621202322117 16 19 18
14 ..-...- ---.--.-- 1 303128292627242522232021 1819 1617
15 -------------- 3130291282726 252423 222120 1918 1716
16-- -- - - 1 1213 4 5 6178 9 10 1112131415
17 ------ 312 5 4 7 6 9 8 11 1013 12 15 14
18 -- I 6 7 4 5 1011 8 9 14115112 13
19 --.---------------- - 7 6 5 4 11 10 9 8 151413 12
20----- - - - -- 1 213 12113 14 1518 9 1011
21 ----------- 3 2113112 15 1419 811 10
22 -.------------------------------------ --1 141512131011 8 9
23- ------ --------- - -115114 13 12111019 8

24- ...............-.--- --------- - 1 2 3 4 5 6 7

25 .......---. -----.-------------.. 3 2 5 417 6

26 -----------.--.----------------- - ...... 16 7 4 5

27 -..---- ---.------.------------------..... . 7 6 5 4
28 .......-----------.. . . . . . . .. .- 1 2 3
29- - -------- 3 2
30 ------.- .------- -1---

Traditional, when an experimenter describes a blocked factorial design, they have

blocking generators based on the design main effects (McLeod & Brewster, 2004:

McLeod & Brewster, 2006; Montgomery, 2001). This has commonly been done for

BFFSP designs as well. Instead, we propose treating the blocking factors as main effects,

54



55

and having WP and/or SP design generators based on interactions with the blocking

factors and basic factors from the FFSP design. McLeod and Brewster represent a

BFFSP design with 2("'h"+Hk+ +k2)J(h+b2), where nj and n2 are the number of WP and SP

factors, k, and k2 are the number of WP and SP design generators, b, is the number of

pure WP blocking generators, and b2 is the number of separator blocking generators. In

our research, we instead use 2b+
, 
+

t
2

H
k

j
+k 2) to represent a BFFSP design where b is the

number of blocking factors, ni and n2 are the number of WP and SP factors, and k, and k2

represent the number of WP and SP factors that are design generators. For example,

McLeod and Brewster use 2(3+3XO+1*1+1) to represent a 32-run BFFSP design with 3 WP

factors, 3 SP factors, 1 pure WP block generator, I separation block generator, and I SP

generator. We redefine this notation as 2 2+(3+3)H1+2) where the first number now

represents the number of blocking factors. We now have one WP generator and two SP

generators.

Let's revisit the chrome-plating example to examine this difference in solution

notation. McLeod and Brewster provide a design to the chrome-plating case study with

r = ABq ,j = ABC, and t 1 = ACpq, for the SP main effect generator, pure WP block

generator, and separator block generator respectively. This method starts with a 25

factorial design using [ A B C p q ] as WP and SP main effects and then adds three

generators [r = ABq 81 = ABC 51 = ACpq I to form the blocked fractional factorial

design. We propose representing this same design by starting with a 2' factorial design

using [,8, 5, A B p ] as the blocking main effects and basic factor effects. Then add
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three generators [C=AflAB q=flSBp r=A,5Ap ] to form the complete blocked

fractional factorial design shown below in Yates Order.

[/0, 5, A B C = AAB p q = ASBp r = A,5,ApJ

Both of these designs are equivalent; however, representing the design using the later

notation allows us to use the ordering scheme shown earlier in this publication and allows

us to modify the IP model from Capehart et al. (2008) to find optimal BFFSP deigns.

The typical running of a BFFSP design is sorted according to the following order: blocks

"- WPs ") SPs. This fits into our partitioning scheme used on the letter groups for the

FFSP designs. But now our first basic factors are the blocking factors.

Elo(king Fa tot andidates WF' Fa( tor ,andidates c4 Factor ,andidates

Eo(kingba,ic 1 , a .t W F',' ca , s [' fac o,Jetor

Now that we have a representation for the set of letter groups for the blocking, WP,

and SP factor candidates, let's consider the integer programming model to select the

optimal design.

IP Formulation

In order to generate a BFFSP design with 2h+(, +n 2
H

k
+

Ak2 ) runs using an Integer

Programming model, we define binary decision variable x, which is equal to 1 if the kth

letter group is chosen as a factor. The variables x, for k = 1..., p, correspond to the

blocking factors, where p, = 2 b -1. The variables x, for k = p, + 1 .. -.p, + p

correspond to the WP factors, with p2 = 2b+(n) -I . And the variables x, for
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k = p, + P2 + 1.., + P2 + P3 correspond to the SP factors with p 3 = 2 +("l+'")-(k k - 1.

Binary variable w,, represents 2FIs between letter groups i andj, i.e. w,, = I if and only

if x, = 1 and xi = 1. We also introduce the binary variable yk which is equal to I if

exactly one 2F1 equivalent to the kth letter group is chosen. If there is more than one 2Fi

that corresponds to the kth letter group then the integer variable zk will give this number.

The following constraints provide an appropriate BFFSP IP model:

xkb (3.1.1)
k= I

Al +P2

zX k= nl (3.1.2)
k=pl +1

Pi + +P/1

: Xk = (3.1.3)
k=p, +P2 +1

Constraints (3.1.1), (3.1.2), and (3.1.3) set the number of blocking and experiment main

effects.

x,+x, -w,j < 1 ,pl < i < j (3.2.1)

x, +x -2w, > O,p, < i < j (3.2.2)

Constraints (3.2.1) and (3.2.2) enforce that w,, = I if and only if x, = 1 and x, =1,

representing a 2FI.

IW, = Yk + Zk, k=p + ... PI + P2 + P3  (3.3.1)

IESk
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zk < M(-YAk = p, + 1,....pl +P2 + P3 (3.3.2)

Yk +Zk < Mrk ,k = p,+ 1 ... l + P2 + P3 (3.3.3)

Constraints (3.3.1) and (3.3.2) represent the 2FIs corresponding to each letter group. S'

is the set of 2FIs that are equivalent to the kth letter group. Here, yk will be equal to I if

we select exactly one 2FI equivalent to the kth letter group and zk will give the number of

2FIs if there is more than one 2FI selected that corresponds to the kth letter group.

Constraint (3.3.3) sets binary variable rk = 1 if there is at least one 2FI equivalent to the

kth letter group.

(l-rk)+xk -r k _lk= p +1 ... P, +P2  (3.4.1)

(1-r,)+xk -2rw 0, k = pA +11 .... P + P2(3.4.2)

P wPfr = ClearWPs (3.4.3)

k=Al+l

Constraints (3.4.1) and (3.4.2) are used to determine which WP factors are clear. We set

WI,
r k =I if and only if we select the kth letter group, Xk = I, and there are no 2Fls

equivalent to that same letter group, (1-r)= 1. Constraint (3.4.3) then sums up the

number of clear WP effects.

(-rk)+Xk- )k' < l,k=p+p 2 +l A +PA+PA (3.5.1)

(1-rk)+xk-2r' >O,k=p1 +p 2 +1 (3.5.2)
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r= ClearSPs (3.5.3)

k=p,+p 2 +l

Similarly, constraints (3.5.1) and (3.5.2) look at the SP factors, setting binary variable

r= 1 if and only if we select the kth letter group, Xk -- and there are no 2FIs

equivalent to that same letter group, (1- rk) 1. Constraint (3.5.3) calculates the total

number of clear SP factors.

W, = YW + zW ,k=P + 'I .... P + P2 (3.6.1)

zk - M(l-yk'w),k = p, +Ip 1 , +P (3.6.2)

yW+y,+(1 -X)-r <2k=p, + 1., p, (3.6.3)

y + Yk +(1- xk)-3rT >O,k p, + .p + p2 (3.6.4)

r" = WPWP2FIs (3.6.5)
k=Th+

Constraints (3.6.1) and (3.6.2) work in a similar manner to those of (3.3.1) and (3.3.2),

with S,Wk representing the set of 2FIs involving two WP factors that are equivalent to the

kth letter group. Here, we are using the binary variable y,W = I when there is a 2F1

consisting of two WP effects that is equivalent to the kth letter group. Constraints (3.6.3)

and (3.6.4) set binary variable rww = 1 when there is only one overall 2FI equivalent to

the kth letter group (Yk) and that 2F1 consists of two WP factors (y"), and also when

there is no main effect selected for the kth letter group (xk ). Finally, constraint (3.6.5)
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sums across all k letter groups for WP factors to determine the number of clear WPxWP

2Fls.

,,ss ss

w,, = y" + z"S , k =p, + 1...p, + p2 + p3 (3.7.1I)

z < M(1- y,)k=p+1 (3.7.2)

yk + yk +(l-xkV)-k <_ 2, k =p, +1 P, +P2 +P3 (3.7.3)

yk" +yk +(1- xk)- 3r" > 0, k p,+1 (3.7.4)

k= SPSP2FIs (3.7.5)

k=Al+l

ks = SPSP2FIs WPerror (3.7.6)
k=pl+l

Type (3.7) constraints work in the same manner as those of type (3.6) with S,S

representing the set of 2FIs involving two SP factors that are equivalent to the kth letter

group. An additional constraint (3.7.6) is added to count the number of clear SP 2Fls that

are tested against the WP error. As pointed out by Bisgaard (2000), SP interactions that

are aliased with WP main effects or interactions involving only WP factors are tested

against the WP error. From our numbering scheme, we know that WP main effects and

interactions involving only WP factors refers to letter groups k = p, + Ip 1  + P2.

W'sk p++p2 +Ip3p (3.8.2)

'Iw
8
wWk

zk w M( - yj,k=pl+p2 +l...p+p2 +ip3  (3.8.2)
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Y- -Yk +(1-Xk)-- < 2,k=p,+p2 +l .= Pp+P,+P (3.8.3)

Y' + Yk + 1- k )-3 ,k=p + P2 +  A ... P + P2 + P3(384

w'+yk +(I-xk)-3rw !O,k=pl +P2+1l.. P (3.8,4)

rw' = WPSP2FIs (3.8.5)
k=pl+p 2 +1

We determine the number of clear 2FIs involving one WP factor and one SP factor using

similar constraints to type (3.6) and (3.7), except with SkS representing the set of 2FIs

involving one WP factor and one SP factor and equivalent to the kth letter group.

Finally, we add constraint (3.9) to set the basic factors, including the blocking

factors.

x2-1 = 1,m= 1. b+(n, +n 2)-(k , +k2) (3.9)

We now can customize the objective function based on various criteria using the

variables: clearWPs, clearSPs, WPWP2FIs, SPSP2FIs, and WPSP2FIs. For example.

if we want to maximize the number of clear 2Fls, but we're not concerned about whether

the design is Resolution III or Resolution IV, we would have the following objective

function:

Max Z = (WPWP2FIs + SPSP2FIs + WPSP2FIs)

Or we could maximize the number of clear SP factors and the 2FIs involving SP factors

by using this objective function:

Max Z = clearSPs+ (SPSP2FIs + WPSP2FIs)

This last example has equal importance for one clear SP main effect or any 2FI involving

a SP factor. If we want to make the number of clear SP factors a higher priority, we

would use weights in the objective function as follows:
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Max Z = 10x clearSPs+ (SPSP2FIs + WPSP2FIs)

McLeod and Brewster (2004) provide tables with secondary criteria after first

looking for a MA design. The first five secondary criteria are as follows, with decreasing

importance:

1. Number of clear main effects

2. Number of clear 2FIS

3. Number of clear SP main effects

4. Number of clear SP 2FIs

5. Number of clear SP 2FIs tested against WP error

Here is how can represent these criteria using a form of goal programming:

Z = 10000x (clearWPs+ clearSPs)+ I O00x (WPWP2FIs + SPSP2FIv + WPSP2FIV)Max
+ I 00x clearSPs+ lOx (SPSP2FIs + WPSP2FIs)+ SPSP2 FIs _WPerror

Example 1: 16-run, 2 blocks, 4 WPs per block, 2 SP runs per WP

Case 1: 3 WPfactors and 2 SPfactors

Here we have a BFFSP design with structure 2:4:2. First assume that we are

selecting 3 WP factors and 2 SP factors, so that we are looking for a 2,+(,3, H,,,) design.

Let's look at how each type of constraint is represented for this specific problem.

Table 18: List of equations for BFFSP design with 2:4:2
structure, 3 WP factors and 2 SP factors.

Constraint Type Formula Number of constraints

(3.1.1) -"xk = 11
k=1

7

(3.1.2) Z Xk = 3
k=2
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Constraint Type Formula Number of constraints
15

(3.1.3) 1 xk = 2 1
k=8

(3.2.1) X, +Xj -wJ 1,1 <i< j 91

(3.2.2) x, +x -2w,, __0, 1 < i< j 91

(3.3.1) w,J = Yk +zk, k =2...,15 14
W S4

(3.3.2) zk _ M(1-yk),k= 2,...,.15 14

(3.3.3) Yk +zk <- Mrk ,k 2,...15 14

(3.4.1) (1-rk)+xk-r- < I,k = 2,...,7 6

(3.4.2) (1- rk)+ xk -2rp >  O k = 2,....7 6
7

(3.4.3) r"=ClearWPs
k=2

(3.5.1) (l-rk)+xk-rk < I ,k=8,...,15 8

(3.5.2) (1 - rk)+ Xk - 2,s' > 0, k = 8,...,15 8
15

(3.5.3) r" = ClearSPs
k=8

(3.6.1) ,w, = yw +z" , k 2,...,7 6

(3.6.2) zk- < M( l - y),k=2.7 6

(3.6.3) yww + yk +(I-x,)-r < 2,k 2,....7 6

(3.6.4) ykw+yk+(l-x,)- 3rw >O,k=2 ...,7 6
7

(3.6.5) E,.w = WPWP2FIs
k=2

-w,, = " +z's k =--2,...,. 15
(3.7.1) ,w,=Yk + k 1 14

(3.7.2) z4- < M(1 - yk), k= 2,...,15 14

(3.7.3) Y+ yk +(-xk)- r's < 2,k 2,...,15 14

(3.7.4) Yk +Yk+(-Xk)-3- ,k2.15 14
'5

(3.7.5) r "=SPSP2FIv I
k=2

7

(3.7.6) r= SPSP2FIs WPerror 1
k=2

(3.8.1) w,=yr+z j,k=8.15 8
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Constraint Type Formula Number of constraints

(3.8.2) k M(l- y),k8.15 8

(3.8.3) yk+yk+(x r 2 , k=8,....15 8

(3.8.4) yk +yk+(l-xk)-3rws2O,k=8,...,15 8

(3.8.5) : r= WPSP2FIs 1
A=8

(3.9) x2,,, =1, m =1.4 4

Constraints (3.3.1) involve the binary variable w,,. This refers to which kth letter group

each 2FI maps back into. We use Table 17 to build the mapping in Table 19 for each

2FI, disregarding mapping into the block letter group ( k = I ) or any 2Fls involving the

blocking factor (i.e. w1 2 , wI 3 , etc.).

Table 19: 2FI mapping for main effects. Does not include
Blocking effects or Blocking x Blocking main effects.

k Main 2F1
2 x2 W4, 6  W ,7  W ,IO W9,11 W12,14 W 13,15

3 CA X3 W4,7 W5, 6  W8 ,11  Wg,10 W12, 15  W13,14

4 X4 W2,6 W3, 7  W8J2 W9,13 W10,1 4  IV,11,15

X5 W3  W91  W1 WXW2, 7  W3.6 W8,13 W9,12 WlO,15 W11,14

6X6 W2,4 W3,5 W8,14 W9,15 W10,12 W11,13

7 X7 W2, 5  W3, 4  W 8 ,15  W9,14 W10,1 3  W1I,1 2

8 W2,10 W3,11 W4,12 W5,13 W6,14 W7,15

9 X9 W2,11 W3,10 W4,13 W5.12 W6,15 W7,14

10 X1o W 2 ,8  W 3 ,9  W 4 ,14  W 5 ,15  W6 ,12  W7,13

X11 2S W4,15 WS.14 W6,13 W7,12

12 . X12  W2,14 W3, 15  W4,8 W5,9 W6 ,10 W7,11

13X13 W2,15 W3,14 W 4 ,9  W5,8 W6 ,11 W7,10

SX14 2 ,12  W3,13 W4,10 W 5 ,11 W6,8 W7,9

I5 X1 5  W 2 ,13  W3,12  W4 ,1 1  W5 ,10  W 6 ,9  W7.8
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Table 19 also demonstrates a property that distinguishes the mapping of WPxWP, SPxSP,

and WPxWP 2FIs. Note that WPxWP 2FIs (top-left 2FI section) map back into WP letter

groups, while WPxSP 2FIs (bottom 2F1 section) map into SP letter groups. SPxSP 2FIs

can map into either WP or SP letter groups. This mapping property for 2FIs allows us

adjust the summations for several of the IP constraints.

Now let's use this example above with a specific goal. We will try to maximize the

number of clear 2Fls by using the following objective function:

Max Z = (WPWP2FIs + SPSP2FIs + WPSP2FIs)

Our IP formulation provides the following results [/8,, A, B, C =AJAB, p, q =13,p 1.

These correspond to letter groups [1, 2, 4, 7, 8, 9]. The corresponding 2Fls. not including

the blocking factor are [(2,4), (2,7), (2,8), (2,9), (4,7), (4,8), (4,9), (7,8), (7,9), (8,9)]
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Table 20: 2FI mapping for BFFSPD with 2:4:4 structure
and 3/2 WP/SP factors. Maximizing number of clear 2FIs.

2 2 4, W,7 W810 W9,11  W12,14  W13 ,15

X5W 2 ,7 W3 ,6 W8 ,13 W9 ,1 2 W10 ,15

6 6W2,4o W3 ,5 W8,14 W513  W 1 1 W7 ,1

-T 7W 2 ,5 W3 ,4 W8 15 W9,14 W 10,1 14,1

10 W3  W61  W7 3
[8X3W210 W3 ,1 W4 ,12 W5,13 W6 ,147J

0 14 W2 ,9 W3 ,9 W4 ,14 W5 ,1 5 W6 ,1 71

IsX1 W2I3  W3 ,8 W4 15 W5 14 W6 ,1 71

the 5,1 main effcts

Cas 2: 3 421 WPfa,14 and8 261 SF7fctor

Now1 if we,1 decid to,1 hae4WWatrsad27,atos9tl ih lcsi h

desin an sil usem the ae otve funtin ouere atrs cme [FIs. A,re o, the are

D =A/AB,. p, q = 16ABp]1. These correspond to letter groups [ 1, 2, 4, 6, 7, 8, 151]. The

corresponding 2FIs, not including the blocking factor are [(2,4), (2,6). (2,7). (2,8). (2. 15).

(4,6), (4,7), (4,8), (4,15), (6,7), (6,8), (6,15), (7,8), (7,15), (8,15)1
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Table 21: 2F1 mapping for BFFSPD with 2:4:4 structure and
4/2 WP/SP factors. Still maximizing number of clear 2FIs.

k Main 2FI

efecs and then clear 2FIs1 The,1 obecivuntinbeoms

3 X S, 8,11 W9,10 W12,15 W13,14

4 U 4W 6 W3,7 W8,12 W9.13 W10,14 Wl 1,15

Ma X; Ox W3,6 W8,13 W9,12 W0,15 WI,14

6 factors W3,5 W8,14 W9, 1 W10,12 W , 3
X77 w2,5 W3,4 W9,14 W1o,13 1l1,12

l X9 W2,11 W3,10 W4,13 W5,12 not W7,14

1 0 XlO W218 !; W3,9 W4,14 W5,15 W6,12 W713

U X11 W2,9 W3,8 W4,5 S,14  W6,13 W47,12

ft x 12 W2,14 W3,15 (4, W5,9 W6,10 W,14

(813 ) W3,14 W49 W58 W6(8, W74)]

d14 X1 4  
W2,12 W3,13 W4,10 W"5,11 

8 W7,
9

1 5 - : W2,13 W3,12 W4,11 W ,10 W6, 9  W ,

There are 8 clear 2FIs. Note there are no clear main effects.

If we change our objective function so that we are first interested in clear main

effects, and then clear 2FIs. The objective function becomes:

Max Z =]10×(clearWPs+celearSPs)+ (WPWP2FIs +SPSP2FIs +WPSP2FIv )

Our factors become [,8,, A, 13, C =,81A, D =,BIB, p, q =ABp]1. These correspond to

letter groups [1, 2, 3, 4, 5, 8, 14]. The corresponding 2FIs, not including the blocking

factor are [(2,3), (2,4), (2,5), (2,8), (2,14), (3,4), (3,5), (3,8), (3,14), (4,5), (4,8), (4,14).

(5,8), (5,14), (8,14)]
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Table 22: 2FI mapping for BFFSPD with 2:4:4 structure and
4/2 WP/SP factors. Prioritized objective to maximize number
of clear main effects and then 2FIs.

k Main 217I

2 X2W4, 6  W5, 7  W8,10 W9,11 W12, 14 Wl3,15

3 (A X3 W 4, 7  W)5, 6  W, 8,1 ! )9,10 W 12, 1 5  W13,14

U1X4 W2,6 W3,7 W8 , 12  W 9 ,13 W10,14 W11,15

56W2,7 W3,6 W8,13 W9,12 W10,15 W1I.14

6 12

7-;F Ix7 W8,15 W9,14 W10,13 W11,12

8 X4W2, 10  W3, 11  W4, 12  W5, 13  W6, 14  w7,15

9 X9 W2,11  W 3 ,10  W 4 ,13  N,12 W 6,15 W7,14

10 X 1 XX,I W 3 ,9 W 4 4W , 5  W 6,12 W , 3

11 Ill W 2 .9  W 4 ,15  W6,13 W7,12

1212 W2143,15 W49W-,9 W6,10 W7,11

13 x13 w2,15 3,4 w4,9 WSA 6,t1t W7,1 0

X14 w2 1 2  W3 ,13  W 4 ,10  W 5 ,1 1  W 6 ,8 W7,9

15 x1 W2 ,13  W 3 ,12  W 4 ,11  W 5 ,10  W 6 ,9

We can see from the table above that there are no clear 2FIs. However, all 6 main

effects are clear. This was due to the prioritization and weighting scheme in the objective

function.

Let's now look at another variation to the objective function. Considering the same

number of factors, let's change our objective function so that we first would like to have

clear SP factors and then 2FIs involving SP factors. The objective function becomes:

Max Z = l Ox clearSPs+ (SPSP2FIs + WPSP2FIs)

Our factors will be [A8 , A, B, C =,8 A, D = AB, p, q = / J4Bp ]. These correspond

to letter groups [1, 2, 3, 4, 6, 8, 15]. The corresponding 2FIs, not including the blocking
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factor are [(2,3), (2,4), (2,6), (2,8), (2,15), (3,4), (3,6), (3,8), (3,15), (4,6), (4,8), (4,15),

(6,8), (6,15), (8,15)]

Table 23: 2FI mapping for BFFSPD with 2:4:4 structure
and 4/2 WP/SP factors. First maximize number of clear SP
main effects and then 2FIs involving SP factors.

k Main 2FI
2 X2 V4, W5, W81 W1 w1,4 )4 31

3 a W fco4,
7 

a W 2c5,
6 w ,11 t e9,10 Wi2,15 W13,14

X4 2,6E p W3,7 W8,12 9,13 10,14 e y,5 X W WW
-- 2,7$WW,6, 8,13 W9,12 10o,15  W11,14

X!24 W3, $  W9,14 W10,12 W11,13

71 x7 W2,5 W914 W10,13 W11,12

8 ' X A W2,10 W3,11 W4,12 W5,13 W6,14 W7,15

1 0 Xl0 W28 W3, 9  W4,14 W5,15 W6,12 W7,13

I 1 2,9XlF3,9 W W5,14 W6,13 W7,12

12 x- W .... W w
X12 W2,14 JsW485,9 W6,10 7,11

13X13 W,3 W3,14 W4,9 W5,8 W6,11 W7,t0

14 x14 w2,, 3,3 w4,10 w5,1 6 9

The two SP factors are clear, and there are four clear WPxSP 2FIs. Although there is

also a WP factor and WPxWP 21 I clear, we were not concerned with these since they did

not add to the objective function.

Example 2: Case study revisited

Now that we have an understanding of how to model the BFFSP design using IP

formulation, let's return to the chrome-plating example from McLeod and Brewster

(2004). Once again, this case has a 4:4:2 structure. Thus, we are looking for 2 basic

69



70

blocking factors, 2 basic WP factors, and 1 basic SP factor. The remaining WP factor

and two subplot factors in the design are design generators. Table 24 below compares

their optimal BFFSP designs for screening (MA) and robust parameter design (RPD) in

the chrome-plating experiment with our IP formulation design (IP) using the top four

secondary criteria from (2004) and top three secondary criteria from (2006). The

remaining secondary criteria in their publications dealt with number of effects tested

against error terms. That type of analysis is beyond the scope of this paper.

Table 24: Three different SPDs for the chrome-plating
case study, and how they score using the secondary criteria
from McLeod and Brewster.

McLeod/Brewster(2004) McLeod/Brewster(2006)

n1, n2 Structure Design Design Generators (a) (b) (c) (d) (a) (b) (c)

MA: 3,3 4:4:2 3,3;0,1;1,1 ABCP1 , Abqr, Acpq61  6 9 3 7 3 5 2

RPD: 3,3 4:4:2 3,3;1,0;0,2 ABC, Apq6 1, Bpr6 2  3 12 3 12 3 9 3

IP: 3,3 4:4:2 2;3,3;1,2 ACO1 , BpqI, AbprO,02 6 14 3 12 3 9 3

We can see that our IP optimal BFFSP design meets or exceeds both the MA and RPD

optimal designs. McLeod and Brewster describe a 2(ni+Y ", k W"kb+) design as "Design =

nj,n 2,kj,k 2,b,b2" where nj and n2 are the number of WP and SP factors, k, and k. are the

number of WP and SP design generators, b, is the number of pure blocking generators.

and b2 is the number of "separator" blocking generators. In this research, we instead use

"Design = b,nj,n2,kj,k 2" where b is the number of blocking factors, nj and n2 are the

number of WP and SP factors, and k, and k2 are the number of WP and SP design

generators. A pure blocking generator is available by reducing the WP design by a

fraction, and a "separation" blocking generator is available by reducing the SP design by

a fraction. However, our formulation allows for a type of design not considered by
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McLeod and Brewster; where the blocking generator is both a pure and a "separation"

generator. We will show this in the next example.

Example 3: Comparison with McLeod and Brewster (2004)

Let's look at five other cases from literature to see how this IP formulation

compares.

Table 25: Comparisons of various BFFSP designs
generated using the IP model to those from
McLeod/Brewster (2004).

Case n1, n2 Structure Design (Brewster/MLeod) Design (Copehart) (a) (b) (c) (d) (e) WLP

1 3,4 4:2:4 3,4,0,2,2,0 7 12 4 12 1 0,3,1,4,2,2,0,2,0,1
2,3,4,2,2 7 13 4 13 0 0,4,1,3,2,2,0,2,0,0,0,1

2 3,4 4:4:2 3,4,0,2,1,1 7 6 4 4 0 0,0,3,7,0,4,G,0,0,0,0,1
2,3,4,1,3 7 15 4 13 5 0,2,1,5,2,4,0,0,0,0,0,1

3,4 4:4:2 3,4,1,1,0,2 4 12 4 12 3 1,0,1,6,0,6,0,0,1
2,3,4,1,3 7 15 4 13 5 0,2,1,5,2,4,0,0,0,0,0,1

4,4 4:4:2 4,4,0,3,2,0 8 12 4 8 0 0,1,3,10,4,8,0,0,0,3,0,2

2,4,4,2,3 8 13 4 10 3 0,6,3,3,4,6,0,6,0,0,0,3

7,2 2:8:2 7,2,3,1,1,0 9 2 2 2 0 0,0,10,8,0,0,4,4,0,0,1,4
1,7,2,4,1 9 15 2 is 1 0,3,7,1,7,4,0,4,0,1,0,3,1

What we have here are five examples from McLeod and Brewster (2004), where

criteria (a) - (e) are as follows:

a) Number of clear main effects

b) Number of clear 2FIs

c) Number of clear SP main effects

d) Number of clear SP 2FIs

e) Number of clear SP 2FIs tested against WP error

McLeod and Brewster used these criteria in decreasing order of importance after first

requiring the design to be MA. We do not consider the MA criterion, but instead use

goal programming in the objective function to accommodate the four criteria. Larger
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numbers for goals (a) - (d) are preferred. The IP designs beat those of McLeod and

Brewster in all five cases.

Looking at case 2 and 3 in Table 25, we see that our proposed IP model results in the

same design for both cases:

[,81 #2 A B C=182A p q=3 2p r=AJ1 Ap s=f8,ABpI

In this design, it is not difficult to see that,8 2 = AC = pq, which is both a pure and

"separation" blocking generator. This type of blocking generator is different from the

ones discussed by McLeod and Brewster.

Conclusion

We have discussed a new approach to representing and designing optimal BFFSP

designs by using the binary representation of their letter notation to incorporate integer

programming techniques. This eliminates the need to reference the design matrix in

order to make calculations when analyzing the alias structure for competing designs. By

breaking up the components of clear main effects and clear 2Fls, we allow the

experimenter to customize their objective function to best suit their needs.
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CHAPTER 4: GENERATING SPLIT-PLOT DESIGNS FOR MULTIPLE STEPS

We have examined manufacturing processes that involve factors that are hard-to-

change and factors that are easy-to-change. Often, it is not the difficulty to change the

factor that puts it into a separate category, but rather the location along the production

line in which that factor has an effect on the final product. Many complex manufacturing

production lines involve a product going through several sequential processing steps.

The output characteristics of this product do not merely reflect the effect of the factors of

the current step in the process, but also on preceding steps in the process. Most designed

experiments are focused on a single process, making analyzing multiple process steps

during one experiment both unusual and more complex. The split-plot design structure

can be used for examining systems involving multiple processing steps.

The objective of this chapter is to generate a first-order experimental design using a

split-plot structure to examine the relationship between factors for multiple sequential

processes. A process with m steps can be represented by an m-stage split-plot design.

And in turn, since each step in the process may have multiple factors that affect the

product, each level of the split-plot design will have multiple factors to manipulate. The

first step in the process, and its associated factors, comprise the whole plot. Each

preceding step corresponds to a subplot in the split plot design. For this research, we will

incorporate the work from our previous two chapters to create an integer programming

model that can create FFSP designs with more than two stages.

Increasing the IP Model for 3-Stages

A simple approach is to work with the IP model from Chapter 3 and treat the

blocking factors as the first stage factors. Although, since we are no longer ignoring
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interactions between blocking factors and regular factors, we must adjust some of the

constraints. Table 26 lists the set of constraints for a 3-Staged FFSP design having

2(n,+"2+n,Hqk,+k,+k,) runs. There are ni and ki factors and design generators repectively for

each ih stage. The variables Xk for k = 1. p correspond to the stage-I candidate

factors, where p, = 2"-" - 1. The variables Xk for k = p + p1  + p, correspond to

the stage-2 candidate factors, with P2 = 2 (,+n2)-kl +k2 _-1. And finally, the variables x,

for k = p + P2 + 1. PI + P 2 + P 3 correspond to the candidate factors for stage 3, with

P 3 = 2-1++n,Hk+k,+k,) _ 1.

Table 26: List of Constraints for 3-Staged FFSP Design

Constraint Formula
Type

(4.1.)X k = n,
k=1

(4.1.2) xk = n2
k=p, +1

P)+ +,+P1

(4.1.3) 2 Xk = n3
k=p, +P2l1

(4.1.4) x,+x -w, < 1,I <i< j

(4.1.5) x, +x -2w, >0,1 <i<j

(4.1-6) w,I=yk +zk ,Vk(4.1.6) W1 =s +z 9

(4.1.7) zk < M(1- Yk ), V k

(4.1.8) Yk + zk Mrk ,V k

(4.1.9) (-kk) + Xk-T < l,k=1. p,

(4.1.10) (l-rk)+xk -2r' >0,k= 1. p,

(4.1.11) =ClearSl
k=1

(4.1.12) <kl)Xk-k 1,k= p, +1_... p,+P 2

(4.1.13) (lTk)+xk-2r'2 >_O,k=p, + 1 . p, +p
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Constraint Formula
Type

(4.1.14) r'= ClearS2
k=p, +1

(4.1.15) (l-rk)+ xk -rk' <I,k=p, +p 2 +1.... p +p 2 +p 3

(4.1.16) (I-rk)+Xk -2r" 3 >0,k=p, +P 2 +1 .... PI +P 2 +p3

(4.1.17) r " = ClearS3
k=p,+p2 +l

SI SISI

(4.1.18) w,= y s s +zk ,k=l.P 1
IE;SkISI

(4.1.19) zISI -< Y ),k=I.P 1M( ss2, k p,.

(4.1.20) YS +yk +(l_xk)_Tk < 2= .,p,
(4.1.21) Yk S+Yk +(1 Xk) 3ss >- 0, ks1s,p

(4.1.22) Zr k = S1SI_2FIs
k=1' YSS SIS2 k=pl+...P+P

(4.1.23) w =kyS+S2 +S ,PI+P.

(4.1.24) zSIS2 < M(1 ySIS2 ), k = p,+1. P, +P 2
(4.1.25) zk + xkSIS2SIS2

(4.1.25) YSS2 +Yk +(1-xk)-rs < 2, k=p, +1 ... PI +P 2(4.1.26) Yk,s Y +(I1- k)-" Irs ,s kp 1A+P
Yk~~~ +YP2 ,.

(4.1.27) r"" = SIS2 2FIs
k=p,+l

(4.1.28) W, =yk k k= p + P2 + 1. + P2 + P3
(4.1.29) ,,SS3 <,±,- s3pps,s <(lYS,k =p +P2 +1 ..... PI+P2 +P3

(4.1.30) ySS3 +yk+(1x) k 2SIS3 kp+P+1.k k (-k)--s <-2,k=p,+ 2 l...p+ 2 p
(4.1.31) y.+k -O +P2+1...PI+P2+P3

(4.1.32) . "' = S1S3 2FIs
h=pl+p2+l

yS2S2 +zS2S2 k- p
(4.1.33) W,jIyS + , k + P 2J)E S 2s2

(4.1.34) zS22< 0 .YS2S2) .
kss k ) , k =1. p, + P

(4.1.35) YSS 2+yk +(1-Xk)-k <2,k p +

(4.1.36) Ysk + Y +(1Xk)- s >- 0,k.p5 k 1 ... PI +P2
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Constraint FormulaType
P +P2

(4.1.37) r s' 2 = S2S2 _2FIs
k=1

Ws s3,k=p, +=P+1,.., P +P2 + P3
(4.1.38) ?1 Y, + 1 ySSP3 + P2 +.

'/X S.S2 S

(4.1.39) Zs2s3 k +A+yA+2S3),P2+P2
(4.1.40) yS 2S3 +yk+(1 x T s2s.(4.1.41) Yk 3 +Yk +(1Xk)-rk <2,k= p, +p 2 +1 1 .... PI+P 2 

+ p 3

(4.1.41) YSkS +Yk +(1 X) 3-, kS -,k jP +1S..I+ 2+P

PI+ +,+PI

(4.1.42) k S2s3 = S2S3 _2FIs
k=PI+P2+1

(4.1.43) w,= yS 3S3 + ZS3S3 Vk
(4.1.44) z - Yk ), kS3S3 <<2(4.1.45) yS3S3Zk +( + lxk)-r3 Vk
(4.1.45) YSkS +Yk + (I - x)-, rs's' -2

(4.1.46) Yk-Yk +03Xk)-3rs >0 Vk

(4.1.47) ''. = S3S3 _2FIv
k

(4.1.48) x2,, =1, m=l ... (n +n 2 + n3)-(k, +k 2 +k 3 )

Split-Split-Split-Split-Plot Example

Let's consider an experiment for a process involving 4 sequential stages (Ramirez &

Tobias, 2007). The process has I factor at Stage 1, 4 factors at Stage 2, 2 factors at Stage

3, and 3 factors at Stage 4. A full factorial design would consist of

2'x 24 x 22 x 23 = 1024 runs. Clearly, this is an impractical number of experimental runs

for most companies.

An initial attempt was performed to augment the design previously used for the 3-

staged SPD to account for the additional stage. While the formulation of the new 4-

staged IP model was feasible, computational time was impractical because we had

constraints accounting for all types of 2FIs (S 1S 1, S I S2, S 1 S3, S 1 S4, S2S2, S2S3, S2S4.
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S3S3, S3S4, S4S4). Therefore, we will revert back to a simpler IP model to compute this

design. We will assume that for the purpose of this experiment, a Resolution IV design is

desired, so that all main effects are clear and estimatable. The following set of

constraints comprise the new simplified model for this 4-staged SPD:

I Xk = n (4.2.1)
k=l

Px k = n2  (4.2.2)

k=pl+l

Pm1+' +P1

ZXk =3 (4.2.3)
k=p1+pz+l

P1+P +P3+P4
P..2 Xk = n4  (4.2.4)

k=pl+p2+pl+l

X, +X / -w1 <l,i<j (4.2.5)

x, + x - 2w,, > 0, i < j (4.2.6)

- Wy = Yk +zk ,V k (4.2.7)

Zk < M(I-y),V k (4.2.8)

yk + zk < M(- xk ), V k (4.2.9)

Constraints (4.2.1) - (4.2.4) set the number of factors in each stage. Constraints

(4.2.5) - (4.2.8) are the same as type (2.2) and type (2.3) constraints from Chapter 2 for

setting the variables representing 2FIs and counting the number of 2FIs aliased together

for each letter-group. Finally, constraint (4.2.9) guarantees the design is Resolution IV or
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greater. In order to find a design with the maximum number of clear 2FIs (y,), we will

minimize the number of aliased 2FIs, using the following objective function:

Min Z=1 Zk (4.2.10)
k

This objective function is equivalent to maximizing the sum of yk. but uses less

computational time in AMPL (approximately 20 seconds).

Applying this simplified model to the 4-staged SPD provides us with a Resolution IV

design, where all the main effects are clear and there are 33 clear 2FIs. This confirms the

design found by Ramirez and Tobias. By using an IP model, we could further add

constraint to restrict the types of 2FIs that are clear. In Ramirez and Tobias, the design

had three 2Fls between the stage I factor and 3 stage 2 factors confounded with other

2Fls. Let's say the experimenter was highly interested in the stage I factor and all of its

2Fls. We can attempt to guarantee these sought after effects are clear by adding the

following customized constraints:

Yk + Zk + Xk _ M(l-wl,)+1,s= p-l-1 ... p +p2 +p3 +p4  (4.2.11)

Yk + Zk + Xk M(1- W,.)+ l,s = p -I ... pI +p 2 + p- +p 4  (4.2.12)

The resulting design still has 33 clear 2FIs, but the factor from stage I and all its 2Fls

with other factors are now clear. This demonstrates the flexibility of generating custom

split-plot designs using IP models.
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CHAPTER 5: APPLYING A GENETIC ALGORTHIM TO A KRONECKER

MATRIX TO GENERATE SPLIT-PLOT DESIGNS

This chapter focuses on some initial work our research committee performed

involving the creation of FFSP designs using the Kronecker product operation and a

genetic algorithm. While the direction of our research shifted to the integer programming

method presented in earlier sections of this document, we feel it is beneficial to present

our initial approach for possible future research.

Kronecker Product Operator

Murat Kulahci (2007) presents a flexible matrix representation for two-level

fractional factorial designs to allow the user to block the experiment based on custom

design criterion. He first points out the need for such a flexible matrix. Although there

have been several authors to create tables for blocking fractional factorial designs up to

128 runs, these tables are generated using specific design criterion. However, with the

increase in computing power, Dr. Kulahci proposes the future statistical software

packages will have features allowing the experimenter to create custom design criterion.

To generate the flexible matrix for blocking, Kulahci uses the properties of the

Kronecker product. The matrix representation of a 2 k factorial design can be generated

using the Kronecker product. Dey and Mukerjee (1999) prove that the Kronecker

product of two Hadamard matrices is also a Hadamard matrix.

The matrix representation of a two-level factorial design with k factors can be written

as

2 k = 2' (9 2' (9... (& 2'

k
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= 2 '® 2
-  , 1<j<_k-I

where ® is the Kronecker product operator and

The 2 k design matrix is a 2k by 2k array where the columns correspond to the

intercept, k main effects, and all interactions of the k effects. For k= 1, the factor

notation for this design matrix is

21=[I A]

For k = 2, an additional factor column is added to the matrix, along with the interactions

with the columns already in the design matrix.

22 =[I A B AB]

This process continues as k increases. For k = 4,

24 =[I A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD]

Next, Kulahci shows how the columns of this design matrix can be partitioned into

candidates for blocking factors and treatment variables in a blocked design. This idea is

also applied to blocking fractional factorial designs. Kulahci identifies a few limitations

as to which fractional designs can be used for blocking with various runs. Kulahci

provides the initial stages for my proposal on designing split-plot designs using the

matrix representation of the 2k factorial design generated using the Kronecker product.

Chen and Cheng (2006) present a method of constructing two-level designs of

Resolution IV. This method uses the Kronecker product to "double" a design. They

prove that the double of a Resolution IV is also a Resolution IV design with twice as
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many runs and factors. They also show that the projection of any subset of factors results

in a design of Resolution IV or greater.

Genetic Algorithms

Choosing a set of columns from the Kronecker matrix can result in a complex global

optimization problem. As the number of runs and factors increase, the numbers of

possible solutions increase, and depending on the goal of the design, there can be very

few designs that meet the optimization goal. An optimization heuristic algorithm is used

to search through the solution space for the global optimum. One such heuristic is the

genetic algorithm (GA). The pseudo-code algorithm for a GA is as follows:

1. Select initial population

2. Evaluate each individual of the population based on the scoring criteria

3. Repeat for each generation

a. Select best-ranked individuals from population as parents

b. Breed new generation through crossover and mutation

c. Evaluate the new offspring

d. Replace worst-ranked individuals of population with offspring

4. Until predetermined number of generations or termination goal is met

Creating the Split-Plot Candidate Set Using the Kronecker Product

A split-plot design with two subplots can be written in matrix notation as

w 1II
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Here, w represents a whole-plot factor and s represents the subplot factor. This is only

one whole plot, and we must change the whole-plot factor and rerun the subplots. Using

the Kronecker product operator, we get

I A B AB

Column I represents the intercept and column 3 represents the one whole-plot factor.

Columns 2 and 4 are used for the subplot factor. We can also use columns 2 and 4 to

represent 2 subplot factors.

We will designate a split-plot design as 2'(® 2', where 2' is the number of whole-

plots with each whole-plot having 2' subplots. This forms a 2' 1 by 2' 1 Hadamard

matrix, with the first column being a column of I's representing the intercept. The

possible columns for the whole-plot factors are

c,i(-2 , c=,.2'-I (5.1)

The remaining (2J - 1)x 2' columns are possible choices for subplot factors.

Each time we apply the Kronecker product operator to the matrix, we are essentially

adding a factor and all its interactions with the original design matrix. This is also

referred to as Yates order. Let's go from 22 to 2 . We add basic factor C and the

interactions with C.
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I A B AB C AC BC ABC
-1 -1 -1 1 -1 1 1 -1-

1 1 -1 -1 -1 -1 1 1

1 -1 1 -1 -1 1 -1 1

1 1 1 1 -1 -l -l -l

1 -l -l 1 1 -l -1 1

l -I -l 1 1 -1 -

I -l l -l 1 -l 1 -1

1 I 1 1 1 1 1 ]

To obtain four basic factors, we would add D and all of its interactions; thus, completing

the full 24 factorization.

Let's look at the 16-run split-plot design. With only 2 whole-plots, there will be 8

subplot runs in each whole plot. Thus, we have a 2' 0 2' Kronecker matrix partitioned

as follows.

1 S 5 5 S S S %k S S S 5 S 5 S

-1 1 1 -1 i 1 1 - 1 -1 1 1 1 1 4

sam matix bu-hpriin will iferent. l * i[

-1 1 -1 il -1 1 1 - l 1l 1 - 1 -1l
1 1 1 1 - il -11 -4 -1 -il -i 1 1 1 il

1 1 -1 1 1 -4 -1I 1 1 l I -11 -1 1 1 1

1 1 1 1 1i 1l -il -14 1 1 1l i -1 -1 1 1{

1 l 4 -1 I -1il - -1 1 I -II 1 -1 1I -1 1

1 i1 1 1 1 1 ... *1 -4 -1 -1 -1 -1 -i1 -i
1 -il -1 i 1 1 - 1 1 -i -1 1l -1 1I -i

1 11 4 -1i -1 1 1 1 1I -i1 -[ .1 -1l 1 i

. -1[ 1 -1 1 1 -il 1 1 i [1 -1[ -1 1I -1[ i

1 1[ 1 1 -1 -1 1 I il i[ 1l - -1 -ll 4

1. -1 -1 1l 1 i. -1 1 1 -i -i[ 1 1 -1l -1l i

1 1 4] -1 1 1 - 1 1 11 ,1 -1[ -11 1 11 -11 -11

1 -1l 1 -1 1 -1 1 1 1 -il i -1l 1 -1 1 1l

I I 1 1 1 il 1 1 I .1 1 1 1 1i 1 i

Equation (5.1) shows that column 9 is the only possible column for the WP factor. Note

that the value for column 9 stays constant within the 8 runs of the first whole-plot and the

8 runs of the second whole-plot. If we want more than two whole plots, we can use the

same matrix, but the partition will be different.

83



84

5 5 N 5 S S W S S \1 S 5 5

U 1 4 1 - 1 I I I I -1 -. I

- -1 9 1 5. -h s r -1 1 1 c 1-~ 1 1 1 - 1 4 -i -I 1 - 1 - 1

• 1 - 1 1 1:i - - 1 -1 -1 1 -.

d 1 wit -1 -th e se -are -t i c1 -1 1 -1 *1 1- - 1 - i 1 - U i
UI 1 1 -1 - - i  1 1 -1 - -1 -1 -- -

U 1 - 1 -1 11,i 1 -I - - 1 I --

- 1 1 - 1 i .i i  
1 -1 1 -i 1 -1 - -I

This is the 22 ® 22 design with four whole plots. We can have up to 3 WP factors, but if

there are 3, then it will be a Res III design. Most likely we will have only 2 WP f'actors.

The possible choices for WP factor columns, using equation (5.1), are {5,9,13}. And

using the basis factor approach, we know that the first two WP factor columns are

columns 9 and 5. These represent the first two basic columns in the 24 full factorial

design. Together with column 13, these are the only columns that have values that stay

the same during each whole-plot. The remaining columns are choices for SP factors, sans

the identity column. Plus, we know that the first two SP factor columns will be columns

3 and 2, representing the other two basic factor columns in the 24 full factorial design.

Finally, let's consider the 2' 9 2' partition with 8 whole-plots, each having 2 subplot

runs.
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S w S W S W S W S W S W S W S

1 1 -1 1 -1 - 1 1 - 1 -1 1 1 - 1 - 1 -1 1

1 1 1 1 -1 -1 1 1 -1 -1 1 1 1 1 -1 c11 1 - -1 1 1 - 1 1 ,11 1 1 -1 1 -1
1 1 1 -1 -1 -1d -1 -1 1 -1 1 1 - 1 1 1
1 -1 -1 1 I -1 - -1 1 - 1 -1 1 1 - 1
1 1i~ -1 1 1 1 - -1 -I -I 1 -I -1 1 1
1 -1 1 -1 1 - 1 -1 -1 1 -1 1 -1 1 -1 -1

1 1 11 1 1 1 -1 -1 I 1 - 1 - 1 - 1 -1 1

1 -1 1 -I -1 -1 1 -1 1 -1 -1 i -1I
1 1 1 1 l* - 1 -1 - 1 1 1 1 1 I -1 -1 -1
1 -I -1 1I -1 -1 1 -1 -1 1 1 -1 -1
1 1 -1 1 -I1. -1 1 1 -1 -1 1 1 -1 -1

The column choices for WP factors are (3,5,7,9,1 1,13,15}. The first three WP factors

will be the basis columns 9, 5 and 3. There can be up to 7 WP factors, forming a

saturated WP design and poor alias structure. The remaining 8 columns can be

designated as SP factors.

Another method for generating a Resolution IV split-plot design is to first use the

doubling and projection method of Chen and Cheng (2006) to produce the flexible matrix

of candidate columns. Let K be an initial matrix consisting of two factors and four runs.

Ii
K=

Note K is a Resolution IV design. By applying the doubling method four times, we arrive

at a matrix with 64 rows and 32 columns. We now have a 64-run design with 32 factors

of Resolution IV. Rearrangement of the run order does not affect the resolution of the

design; therefore, we can rearrange the rows to match the blocked form of a split-plot

design. The new matrix represents half of the columns from the SPD using the

Kronecker method described above. Using the 24 ® 22 notation to represent a SPD with

16 whole-plots, each with 4 subplot runs, our doubling matrix now provides us with 8
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columns to choose the 7 WP factors, with the remaining 24 columns for the 8 SP factors.

The remainder of this section focuses on the Kronecker method previously described for

generating the matrix of candidate columns, and will not look at the alternative approach

of doubling the design matrix.

Using Genetic Algorithm to Search for an Optimal Design

Regardless of the method to produce the candidate matrix, we are still left with two

collections of candidate columns to select the remaining whole-plot and subplot factor

columns. We apply a genetic algorithm search heuristic to search through the design

space for the optimal solution. We first generate an initial population by randomly

selecting the whole-plot and subplot factor columns from the candidate list of the

Kronecker matrix. The initial population is set at 1000. We evaluate the initial

population using the predetermined method of design evaluation criterion. For example.

we may be simply counting the number of clear two-factor interactions. Once all

members of the population have been scored based on this criterion, we select the top

10% of the designs to form the parents. We then generate the next generation of

offspring using the parents. Two parents are selected at random. These two parents will

generate two offspring. The set of whole-plot factors from one parent is combined with

the set of subplot factors from the other parent. This generates one offspring. Combining

the remaining factors from these two parents generate the other offspring. This procedure

is repeated, randomly selecting two parents and generating two offspring, until the second

generation population is created. The offspring comprising the second generation is

scored based on the criterion and ranked along with the initial set of parents. The top
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10% from this second generation will now form the new set of parents. This procedure is

repeated over 25 generations. Thus, we have evaluated a total of 1000 x 25 = 25,000

design matrices. This is a fraction of the total solution space.

Designs With More Than 2 Steps

The Kronecker matrix can be used to generate the design for a split-plot design with

n number of steps. There exists one whole plot design, and n-i subplot designs, with

each whole plot design nested within the others. Let's look at a basic example as to how

this approach can be implemented. Consider the 64-run Kronecker matrix. Let there be a

three-stage process with 2 factors in the first stage, 3 factors in the second stage, and 4

factors in the last stage. We can look at this as a 22 ® 22 ® 22 design. This notation

represents a whole-plot design consisting of 4 whole plots. Within each whole-plot, there

exists a sub split-plot design with the other two stages. The 16 runs within each whole-

plot can be viewed as a 22 ® 22 design. Thus there are 4 plots for the second stage, with

each plot consisting of four runs.
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64-run 3-Stage SPD (22 x 22 x 22)
Stage-3 Basic ColumrA remaining white columns are candidate columnsfor stage-3 factors > 2
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Stage-2 Basc Columns Stage-i Basc Columns Stage-i Factor 3 Column

* Stage-2 FactorCandidate Columns for facors > 2

Figure 1: Matrix partitioning scheme for a 64-run 3-
staged SPD

Expanding from the proposed approach for a two-stage split-plot design, we can see that

the first stage has 3 possible candidate columns (e, f e/) , the second stage has 12

candidate columns (c, d, ed, and interaction columns with stage-I candidate columns),

while the final stage of the design has the remaining 48 columns to select for factors (a,

b, ab, and interactions with columns from stage-i and stage-2 columns) . Again, using

the same principle we applied to the two-staged split-plot design, we can already identify

2 basic factor columns for each stage due to the design we are considering. Thus, there

remains one factor to designate for stage 2 and two factors to designate in stage 3.

Determining the selection for these remaining factors is once again a choice based on the

desired characteristics of the final design. Exploration of this design example and a
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generalization of the n-staged split-plot design using the Kronecker matrix could be

explored in future research.

Example 1: 24 ®22 7/8 SPD

Let's look at a two-level design with 64 runs with 7 whole-plot factors and 8 subplot

factors. using 16 whole plots, each with 4 subplot runs (2 4® 22). This is the same

example design provided by Kulahci et al. (2006). The flexible matrix provided by the

Kronecker product leads to 15 candidate columns for the 7 whole-plot factors and 48

candidate columns for the 8 subplot factors, resulting in over 2.4 Trillion possible

balanced split-plot designs. An exhaustive search of all designs for any custom criterion

is not feasible unless some preprocessing occurs.

The first phase of preprocessing requires a little bit of explanation. Let's step back

and look at a 24 balanced two-level factorial design. In order to have 16 distinct runs, we

must have the four basic factor columns[A B C D]. Let's say we select four arbitrary

independent columns, [A AB C D]. Rearranging the order of the runs will still produce

the four basic factor columns. For a fractional factorial design, 2', where m-n = k.

we know there must be k basic factor columns. Thus, the 2- = 2' fractional factorial

design has [A B C D] as the basic factor columns and three more chosen from the

interactions of these basic columns. Creating a split-plot design using the flexible matrix

described above, 2' ® 2'. we see that there are a total of i + j basic factor columns, i of

which belong to whole-plot factors and the otherj basic factor columns will be used as

subplot factors.
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Going back to our example with 24 0922, we know that the first 4 whole-plot factors

will be the four basic factor columns [C D E F] using the Yates order notation

described in a previous section. The other two basic factor columns [A B] are the first

two subplot factors. After assigning these six basic factor columns, there are 3 remaining

whole-plot factors to choose from the remaining 11 candidate columns. Similarly, there

are 6 remaining subplot factors to choose from the remaining 46 candidate columns. This

reduces the number of possible designs to 1.5 Billion.

Now assume we want to have clear main effects in addition to maximizing clear two-

factor interactions as our custom criterion, i.e Resolution IV design. We can perform a

second preprocessing step to further reduce the solution space. We have already shown

that the six basic factor columns are in the solution. We can therefore eliminate the

columns representing the two-factor interactions between these basic factors from the

candidate lists.

2'(2'=[I A B X C ABC D ABD O ACD BCD.

This eliminates 15 more candidate columns: 6 from the whole-plots and 9 from the

subplots. Now there are only 23 Million possible designs. Using an exhaustive search,

the Matlab code requires just over 70 minutes finding the maximum number of clear two-

factor interactions for Resolution IV designs. There are 27 clear two-factor interactions,

and this solution is the same as that used in Kulahci et al. (2006). Using the simple GA

algorithm, the same solution was found in less than a minute. Next, we consider

Resolution IV designs and count the number of clear cross two-factor interactions. That

is, the two-factor interactions (2FI) with one whole-plot factor and one subplot factor.
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The exhaustive search took over two-hours and resulted in 14 clear cross 2FI. These 14

clear interactions are all cross 2FIs consisting of two distinct subplot factors. The GA

algorithm took less than 45 seconds and found a different set of columns from the

Kronecker matrix; however, the result still had all cross 2FI dealing with two subplot

factors clear. Since the run order for the subplot runs with each whole-plot can be

rearranged without changing the alias structure, this solution can be considered the same

as that found using the exhaustive search.

For a Resolution III design, the exhaustive search has not been completed at this time

due to the time needed to compute all 1.5 Billion designs. The GA method took less than

a minute and resulted in 32 clear 2Fls. For the maximum number of clear cross 2Fls, the

GA algorithm produced a design with 26 in less than a minute.

Example 2:2 4 (® 22 5/4 SPD with custom criterion

The maximum number of clear 2FIs or clear cross 2Fls are traditional design

criterion. We want to allow the user to select specific main effects and/or two-factor

interactions to be clear of other effects. This initial study allows the user to specify the

number of whole-plot and subplot factors that must have all of their two-factor

interactions clear. For example, using the 2 4 022 matrix, let's have 5 WP and 4 SP

factors. Due to the system under investigation, there may be 3 important WP factors and

2 important SP factors that the experimenter wishes to remain clear, even their two-factor

interactions. Our custom GA searches for designs with the most clear 2FIs involving the

first three WP factors and first two SP factors. We can look at the "first" factors because

the experiment can still assign the important variables to these factors before running the
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experiment. The GA code took less than a second to solve several versions of this

example (various number of important WP and SP factors), both for Resolution Ill and

IV designs.

It must also be noted that when running this code looking for a Resolution III design,

the initial population did not contain the optimal answer. Thus, the GA approach is

improving the solution over the generations.

This initial study only looked at maximizing the clear 2FIs with these important main

effects. Future research could allow the user to further customize the criterion, including

specific main effects and specific 2FIs.

Other Considerations

The majority of these GA runs found the optimal solution generating the initial

population of 1000 random designs. So for the 2 9 2 2 7/8 Res IV SPD, with over 23

Million design options, there must be a considerable number of designs that have 27 clear

2FIs. These designs could actually be considered equivalent designs once the whole-

plots or runs within each whole-plot are rearranged. Further preprocessing could be

performed to remove the redundant design in the solution space.
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CHAPTER 6: CONCLUSIONS, SUMMARY OF ORIGINAL

CONSTRIBUTIONS, AND FUTURE RESEARCH

Conclusions

In Chapter 2, fractional factorial split-plot designs were represented using Yates

order numbering scheme. Using this numbering scheme, a integer programming model

was developed to create optimal FFSP designs according various performance criteria,

including maximum number of clear 2FIs. Using these IP models, both Resolution Ill

and Resolution IV FFSP designs were generated for 8-, 16-, and 32-runs with various

numbers of whole-plot and subplot factors. By incorporated the numbering scheme for

the main effects and design generators, additional IP constraints were derived to

customize the design further. Using these constraints, an experimenter can search for

designs that isolate the effects of individual main effects and their corresponding 2Fls.

This customized approach was also demonstrated on the example designs provided. It

was shown how the FFSP designs generated, which are D-optimal, compare to the D-

optimal split-plot designs generated by using common statistical software. The IP model

allows the experimenter to create customized designs with main effects and 2Fls clear of

other main effects and 2FIs, while the statistical software only allows the experimenter to

require these effects to be estimatable.

In Chapter 3, blocking FFSP designs was introduced. In order to incorporate the

same numbering scheme as in Chapter 2, a new approach for represented blocked designs

was presented. Blocking effects are now considered main effects, or basic factors.

Design generators for the whole-plot design and subplot designs are generated using a

combination of basic factor letters from the blocking factors and whole-plot/subplot
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basic factors. Once incorporated into the numbering scheme, the IP model from Chapter

3 was modified to generate blocked FFSP designs. The chrome-plating case study

provided an opportunity to compare our IP generated design with a minimum aberration

design and a robust parameter design. Other examples provided evidence that our IP

model can generate blocked FFSP designs that meet or exceed the performance

characteristics of those presented in current literature.

Chapter 4 expanded the IP model to generate FFSP designs for sequential processes

with more than 2 stages. The model formulation was provided for a three-staged process.

so that all types of 2FIs were accounted for and could be incorporated into the objective

function accorded to the experimenter's needs. A split-split-split-split plot example (4-

stages) was provided to show how the IP model could still be augmented with customized

constraints to isolate individual main effects and their interactions.

Although our initial research shifted to using IP models to create FFSP designs.

some initial study was conducted on applying modem heuristic techniques to a candidate

matrix of design runs to create the split-plot designs. Chapter 5 provides a detailed

overview of this research proposal.

Original Contributions

A new IP model was developed to generate FFSP designs. The model formulation

allows the experimenter to customize the alias structure.

A numbering scheme based on the letter-group notation for the design generators

was developed in order to linearize the constraints on the model. Representing the letter-

groups as binary variables provided the means to linearize the constraints on the model to

meet the IP requirements. Constraints were created to dictate the aliasing structure of the
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first order effects and their interactions. By customizing these constraints, FFSP designs

were generated with specific main effects and 2FIs clear of any confounding effects.

A model was also developed to create blocked split-plot designs. By considering the

blocked effects as basic factors, we are able to adjust the IP model constraints to ignore

Blocking x Blocking effects and Blocking x WP/SP factor effects when calculating the

number of clear 2FIs. It was shown how this model, along with flexibility in the

constraints and objective function, can generate split-plot designs that exceed the

performance of competing literature examples.

By expanding this IP model, customized split-plot designs were created for

manufacturing processes with more than two steps. The customizable objective function

allows the experimenter to optimize specific types of clear effects and 2Fls.

Customizable constraints can also be added to isolate individual main effects and their

interactions. While there exists some software available today to create FFSP designs for

multiple stages (SAS), the user does not yet have the capability to customize the design to

the extent that we have shown.

Genetic Algorithms were extended for use in the creation of split-plot designs from a

design matrix representing a candidate set of factor columns. The Kronecker product

operator was used to create the matrix, and a partitioning scheme was developed to

separate the whole-plot factor candidates from the subplot factor candidates.

Future Research

In this work, it was assumed that interactions of order greater than 2 were negligible.

The model representation introduced could be extended for the situation where three-

factor interactions (3FIs) are also considered; however, advances in computer speeds
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would be necessary do to the added complexity by having 3FIs in the model. Chapter 3

looked as modifying the IP model to generate blocked FFSP designs, and several

examples were explored. The models considered in this chapter were not customized

using the customized constraints as shown in Chapter 2. Further consideration could

explore blocked designs with customized constraints to target individual effects and

interactions.

Chapter 5 provided a general approach for using genetic algorithms to search for

FFSP designs among the columns of the Kronecker matrix. While initial results were

promising in finding solutions, it was unclear as to how much the heuristic played a role

in the final solution. It would be useful to explore various strategies for generating the

initial GA population and the mutation scheme to see if further improvements could be

made on the designs.
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